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Abstract: Model-based techniques are these days being embraced by the industry in their
development frameworks. While model-based approaches allow for offline verification and
validation of the system, and have other advantages over existing methods, they do have their
own challenges. One of the challenges is to obtain a model describing the behavior of the system.
In this paper we present the Modular Plant Learner (MPL), an algorithm that explores the
state-space and constructs a discrete model of a system. The MPL takes as input a hypothesis
structure of the system – called the PSH – and using this information, interacts with a simulation
of the system to construct a modular discrete-event model. Using an example we show how the
algorithm uses the structural information provided – the PSH – to search the state-space in a
smart manner, mitigating the state-space explosion problem.

1. INTRODUCTION

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy certain specifications.
The obtained supervisor can be used to control the system
and this controlled system is known to behave according
to the specifications. However, modeling large complex
systems is a challenging task that requires skill, in-depth
knowledge of the system, and creativity. Manually defining
the behaviour of the plant model is an error prone task;
incorrect or incomplete models are misleading, and can
unnecessarily complicate the development process. Hence,
assuming access to a correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior (Ramadge and
Wonham, 1987b). These, modular models, can then be
used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
? Work supported by the Swedish Research Council(VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

In this paper, we propose a state-based active learning
approach that is able to learn a modular model of a target
system. The main benefit being the ability to decrease
the search space of the learning process by exploiting
the modular structure of the system and, thus, mitigat-
ing the state-space explosion problem. To that end, we



assume the possibility to simulate the plant behavior in
a simulation environment. We present the Modular Plant
Learner (MPL) algorithm that explores the various states
reachable in the simulator to construct a modular model of
the simulated system. Additionally, the specific implemen-
tation of MPL proposed in this paper is formulated such
that it can employ distributed computation to improve
scalability. That is, the search is divided into small inde-
pendent operations that can be distributed over multiple
processors or computers.

This paper is organized as follows. First, Section 2 intro-
duces the relevant notation. Section 3 then presents the
main components that enable learning a discrete model,
followed by the Modular Plant Learner. Section 4 takes an
example and walks through the algorithm demonstrating
the different concepts and showing its feasibility, before
concluding in Section 5.

2. PREREQUISITES

Let I be a totally ordered index set. Let V = { vi | i ∈ I }
be a set of variables such that each variable is indexed
by one element of the indexing set, that is |V | = |I|. Let
V ′ = { vi′ ∈ V | i′ ∈ I ′ ⊆ I } be a subset of variables of
V respecting the indexing order, with |V ′| = |I ′|. Each
variable vi has a (finite discrete) domain Di, and let the
domain of V be DV = Di1 ×Di2 × · · · ×Di|I| , where the
indices ij ∈ I (for j ∈ 1..|I|) respect the indexing order. In
the same way, the domain of V ′ is given as the Cartesian
product over the domains of the variables of V ′ in the
order defined by the indexing subset I ′ ⊆ I.
Let a state q be defined as an element of the domain of
V , that is, q ∈ DV . Thus, a state q is a valuation of the
variables of V . Likewise, let a sub-state q′ be a valuation
over V ′. Define the projection of a state q ∈ DV onto a
sub-state q′ ∈ DV ′ as PV ′(q) = q′, such that all vi ∈ q′

have the same valuation as in q. For a set of states Q, let
PV ′(Q) denote the projection of each element in Q on V ′

Let Σ, called an alphabet, be a finite set of events. Denote
by τ the silent event, not part of Σ.
Definition 1. (DFA). A (deterministic finite) automaton
is defined as a 4-tuple 〈Q,Σ, δ, q0〉,where:

• Q is the set of states;
• Σ is the alphabet containing the events;
• δ : Q× Σ→ Q is the partial transition function;
• q0 ∈ Q is the initial state.

Plant modules Let Gi = 〈Qi,Σi, δi, q0i〉 be a DFA that
describes the behaviour of a plant module. The full be-
haviour of the plant is then described by a set of all
its individual modules given by G = {G1, G2, ...Gn},
known as the modular model. The synchronous composi-
tion (Cassandras and Lafortune, 2009) of all the modules
G1 ‖ G2 ‖ ... ‖ Gn results in the complete behaviour of
the plant referred to as the monolithic model.

3. TOWARDS LEARNING A MODULAR PLANT

Farooqui and Fabian (2019) showed how a monolithic
discrete event model can be learned from a simulation.

M1start M2B

Fig. 1. Two machines and a buffer

However, learning a monolithic model requires the learn-
ing algorithm to traverse and visit all reachable states,
resulting in the state-space explosion problem. Thus, in
this section we show the possibility to instead learn a
modular plant, where included modules are learned in
parallel using the MPL algorithm. The algorithm interacts
with a simulation of the plant that is to be modeled, and
actively queries the simulation in a smart way to learn
what states are reachable from the initial state for the
respective modules. To be able to do this, the algorithm
uses an initial plant structure hypothesis (PSH) to split the
acquired learning into a set of modules.

3.1 Running Example

In this section, we present a well known example of two
machines and a buffer (Ramadge and Wonham, 1987a).
Here, two identical machines M1 and M2 are connected
with a buffer B in-between. Each machine can load a part
and then unload it. The setup is shown in Figure 1. When
machine M1 unloads a part, the part moves to the buffer;
when M2 loads a part it does so from the buffer. Models
representing the behavior of the three subsystems are
shown in Figure 2. States are represented by circles, and
the arrows represent the transitions between the states. An
arrow with no tail state indicates the initial state. The al-
phabet of the system is { load1, unload1, load2, unload2 }.

Working1

Idle1

unload1

load1

(a) Machine 1

Working2

Idle2

unload2

load2

(b) Machine 2
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Empty

load2

unload1

(c) Buffer

Fig. 2. Models for the two machines and the buffer.

3.2 The Simulation

Simulations provide several advantages in comparison to
using the real system. Unlike the real system, the sim-
ulation can be run faster than real-time, even multiple
instances in parallel, thereby speeding up the learning
process. Dangerous collisions and unforeseen events are
avoided and confined to the simulation, providing a safe
learning environment. Additionally, the financial invest-
ment needed, once a simulation is obtained, relates to
obtaining powerful computers – which in today’s world
is relatively cheap.

It is important to highlight the requirements of the plant
simulation. Firstly, it should be possible to, using an
interface, execute an event, or a string of events. The plant
simulation has at each time a set of enabled events that
can be executed to perform specific actions. When these
actions are performed the state of the plant is updated
resulting in another set of enabled events. Hence, a string
of events can be executed taking the plant from one state
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Fig. 3. The complete behaviour of the simulated system
when the buffer size is one

to another state. In the case that an event is requested to
be executed that is not enabled by the plant in a particular
state, the simulation should reply with an error message.

Secondly, it should be possible to observe and set the state
of the system. The state here consists of a set of variables
and their corresponding values in the simulation; these
could, for example in a manufacturing context, be the
status of sensors, actuators, and product position.

For this purpose, let us define a function getNextState that
takes as input an assignment to the variables and an event
to be executed. The output of this function is the resulting
variable assignment when the given event is executed in
the simulator from the given state or the aforementioned
error message.

It is important to note here that we have presented the
simulator to be a discrete system. In most cases, these are
not discrete, neither in time nor variable values. However,
we assume that the simulation can be discretized in order
to learn a discrete model.

Following up from the example, a simulator is created that
mimics the complete system. That is, the simulator does
not differentiate the two machines from the buffer specifi-
cation. Thus, the simulator behaves like the synchronous
composition of the three models of Figure 2, shown in
Figure 3.

Furthermore, three variables, varM1, varM2 and varB,
are used in this simulation to keep track of the state of
each subsystem. The domains of these variables are given
by the respective state names in the automata models of
Figure 2. That is, variables varMi are initially set to Idle
and can be updated to the value Working and then reset
back to Idle by executing the corresponding load and
unload events, respectively. Similarly the variable varB
is initially set to Empty and can then be updated to Full,
and reset to Empty when events unload1 and load2 are
executed, respectively. The initial state of the complete
simulator is q0 = 〈Idle, Idle, Empty〉. The values of the
three variables are continuously monitored.

3.3 Plant Structure Hypothesis

The PSH can be considered the core of the modular learn-
ing technique proposed in this paper. It can be viewed as a
high-level meta-model that defines the modular structure
of the system. The modular structure refers to a division of

the complete plant behavior as separate modules, usually,
but not necessarily, representing the separate subsystems
that the plant is composed of; in the example these are
M1,M2, and B. This can then be exploited by the MPL to
divide the learned information into separate plant modules
and to reduce the search space, ultimately mitigating the
state-space explosion problem.

The PSH is defined using three pieces of information.
Firstly, a set M provides a unique name for each module
that is to be learned. The cardinality of M defines the
number of modules in the system. Secondly, a mapping E,
called event mapping, defines which events of the global
alphabet Σ belong to which module. Thus, E(m) ⊆ Σ is
the local alphabet of the module m ∈M . That an event is
part of an event mapping implies that the corresponding
module is involved in executing the event and, further-
more, that it requires this event to be represented as tran-
sitions in the automaton of the module. Consequently, to
minimize the size of the final modular plant, events should
only be included in event mappings of those modules that
have a vital role in their execution. Finally, a mapping
S, called state mapping, defines the relation between the
modules and the set of variables in the simulator. That
is, for all m ∈ M , S(m) ⊆ V contains those variables
that either affect or are affected by events in the module.
Variables that are not part of a specific state mapping
can be ignored by that module. Thus, for a given module
m ∈M , two global states qi, qj ∈ V D are equal within the
module if their projections onto S(m) are equal, that is,
if PS(m)(qi) = PS(m)(qj). Hereinafter the projection of a
state q onto a state mapping S(m) is denoted Pm(q).
Definition 2. (PSH). Formally, the PSH is a 3-tuple H =
〈M,E, S〉, where:

• M is a set of identifiers for the modules;
• E : M −→ 2Σ is the event mapping ;
• S : M −→ 2V is the state mapping ;

To guarantee that the MPL explores the full plant, the
union of all event mappings should encompass the whole
alphabet Σ and the union of all state mappings should
encompass the whole of V . That is, each event σ ∈ Σ
and variable v ∈ V must be included in the event and
state mapping of at least one module, respectively. This
is, however, only a lower bound on the PSH. For any
given system there may exist multiple PSH of various
coarseness; the coarsest one being a PSH defining only
a single module m with E(m) = Σ and S(m) = V .
This does satisfy the criteria and will ensure that a full
plant model is learned but the learning will be very
inefficient, since there is no modular information to exploit.
In many cases a PSH can be refined by considering the
physical structure of the plant, defining separate modules
from subsystems, such as machines, robots or vehicles. In
other cases it may be more efficient to combine multiple
strongly connected subsystems into a single module, since
their shared behavior otherwise needs to be represented
redundantly in each module, or to define modules that
capture specific operations or actions regardless of the
subsystems involved.

Additionally, what modules that can be learned also de-
pends on the available state variables in the simulation.



For example, assume that there is a second simulation
of the running example that outputs a single variable
that merge the values of the variables varM1, varM2 and
varB into a single string of text. That is to say, a state
〈Idle, Idle, Empty〉 in the original simulation would in the
new simulation be, for example, “Idle Idle Empty”. In this
case, the information available in the state variable is the
same and, hence, the system is unchanged but the MPL
can no longer learn the modular plant model. With no
distinction between the state variables, the state and event
mapping of all modules have to include the single variable
and the full alphabet respectively, since the variable is
affected by all events and any change to this variable is
of interest to the entire system.

Ideally, the event and state mappings should be as re-
strictive as possible and only include events and state
variables that affect the collaboration between modules.
This will maximize the structural information that can be
exploited, which minimizes the search space of the learning
algorithm. Furthermore, the state mapping of each module
typically must include every such variable; but in some
cases, as shown in the example below, the learning can
be completed even without this constraint fulfilled. This
however, depends strongly on the specific structure of
the plant and requires extensive understanding of both
the plant and the learning process to identify, and hence,
cannot be expected in most situations.

To summarize, defining a PSH is a complex task and
there is typically no unique solution. There are multiple
properties to consider when defining the modules in a PSH,
such as the extent of the state-space explosion compared
to the amount of redundancy between the modules. In
general, an event/state mapping should be as restrictive
as possible but must be an overestimation of the required
events/variables while conforming to the simulation. It is,
however, not always trivial to identify all events and state
variables that can be left out from a specific module. Thus,
the creator of a PSH must have sufficient knowledge about
the system and the connection between events/variables
and the defined modules.

Example Continued

To better understand the notion of a PSH, let us define the
PSH for the example of Section 3.1. Here, we are interested
in learning the behaviour of the physical subsystems M1

and M2 and of their interaction through B. Following the
given PSH guidelines, a suitable PSH can then be defined
as:

• M = {M1,M2, B},
• E(M1) = {load1, unload1},
• E(M2) = {load2, unload2},
• E(B) = {unload1, load2},
• S(M1) = {varM1, varB},
• S(M2) = {varM2, varB},
• S(B) = {varM1, varM2, varB},

where the set of modules represents the physical subsys-
tems, the event mapping includes all events of these sub-
systems, and the state mapping for each module includes
all variables that contribute to its behaviour. However,
this PSH is very inefficient since S(B) includes all state

variables, which would result in a monolithic search of the
plant to learn this module. Fortunately, typically only in
very small systems with strongly connected subsystems
would a state mapping cover the complete set of state vari-
ables. Moreover, as will be shown in Section 4, the learning
of this specific system can done much more efficiently by
omitting some variables from the state mappings.

3.4 Learning a Modular Plant

Given an interface to a simulator capable of simulating
the complete plant, the MPL will compute modules, as
defined by the PSH. This section presents the algorithm
and demonstrates its working with the help of the example.

The Modular Plant Learner

The algorithm consists of three procedures, Main, Ex-
plorer , and ModuleBuilder, see Algorithm 1, and is con-
structed so that the latter two procedures execute concur-
rently. The program is initiated by Main that launches
the Explorer and one instance of ModuleBuilder for each
module defined in the PSH. The Explorer is responsible
for exploring the new states; and the ModuleBuilder keeps
track of the module as it is learned.

The Explorer maintains a queue of states that need to
be explored, terminating the algorithm when the queue
is empty. The learning is initiated by adding an initial
state to the queue, which becomes the starting state of the
search. For each element in the queue, the Explorer checks
if an event can be executed. This is achieved using the
simulator interface. If a transition is possible, the Explorer
broadcasts the current state (q), the event (σ) and the
state reached (q′) to all the ModuleBuilders.

The ModuleBuilder tracks the learning of each module as
an automaton. This is done by maintaining a set Q(m)
containing the states of the module, and a transition func-
tion T (m) : Q(m) × E(m) → Q(m). The ModuleBuilder,
on receiving the broadcast, finds all the variables V ′ that
have been updated in the reached state. The builder then
evaluates if the received transition is of interest to the
particular module. There are two conditions for the builder
to be interested in a transition.

(i) σ ∈ E(m), the event in the transition is also defined
by the event mapping of the particular module.

(ii) S(m)∩V ′ 6= ∅ , i.e at least one variable defined in the
state mapping has been updated in the transition.

The ModuleBuilder processes the transition if one or both
of the above conditions hold, leading to three possible
scenarios.

When both conditions (i) and (ii) are satisfied, then the
transition (Pm(q), σ) → Pm(q′) is appended to the set of
known transitions for module m. Additionally, if Pm(q′) is
a new state, i.e, Pm(q′) /∈ Q(m), then q′ is added to the
global exploration queue used by the Explorer , and Pm(q′)
is added to Q(m).

When only condition (ii) is satisfied, then a τ -transition
(Pm(q), τ)→ Pm(q′) is added to the module. This is done
to monitor changes made by other modules that may lead
to new states where the current module can continue its



execution. Additionally, similar to the above case, if q′ is a
new state, then it is added to the global exploration queue
and added to the local set of states in Q(m).

When only condition (i) holds, then the resulting transi-
tion refers to a self loop; since, q = q′. The ModuleBuilder
adds the transition (Pm(q), σ) → Pm(q′) to its set of
transitions.

Once the transition is processed the ModuleBuilder waits
for further broadcasts. The algorithm terminates when
all modules are waiting for broadcasts, and the global
exploration queue is empty. Each ModuleBuilder can now
construct and return an automaton based on Q(m) and
T (m).

Note that the criteria Pm(q′) /∈ Q(m) implies that q′ is a
new, not seen before, state. However, the converse does not
hold; q′ can be a new, not seen before state, but Pm(q′)
may still already be in Q(m). This lets a new state q′
be further expanded if and only if it also represents a
new state in at least one of the modules. This property
constitutes the main search space reduction of the modular
approach. However, it relies heavily on the correctness of
the PSH. If one of the state mappings is too narrow, this
might ignore some important combinations of variables
and, thus, fail to explore the full system behavior.

The τ -transitions mentioned above represent actions that,
since they do not involve any event in the event-mapping,
should not represent any vital behavior within the module.
Moreover, this implies that any state variable that is
changed by these transitions can be ignored by the module.
That is to say, if the value of a state variable is changed
by a τ -transition, which by definition can be ignored in
the module, then this variable can also be ignored. To
show this, consider the contradiction where a τ -transition
changes the value of a state variable that is actually
important to the module, this implies that the transition
represents a vital behavior within the module, which is
contradicted by the definition of the event mapping of the
module. Thus, assuming a correct event mapping, the state
mapping can be refined by removing all state variables
that are changed by any τ -transitions. All τ -transitions
will then become self-loops, since the state projection of
the source and target states now are equal. Finally, these
self-loops can safely be removed.

To further illustrate this concept, consider M2 in the
example. Given the PSH defined in Section 3.3 the state
mapping is S(M2) = {varM2, varB}. The reason why
varB is interesting to this module is that, from an initial
state where the machine is Idle and varB is Empty,
there are no transitions available in the module. Instead
it requires varB to change to Full in order for the event
load2 to become possible. It then makes sense to monitor
varB, such that the module identifies that this state,
where the buffer is full, does occur and continues the
exploration. Filling the buffer does not, however, directly
involve the second machine and, hence, the event unload1

is omitted from E(M2) and consequently generates a τ -
transition. This is illustrated in Figure 4.

Empty.Working2Empty.Idle2

Full.Idle2
load2

unload2

tau

Working2Idle2

unload2

load2

Fig. 4. Illustration of τ -transitions as a means to monitor
external changes to the state variables of the current
module. (left) M2 including a τ -transition, indicating
that varB has to change before the local event load2

can execute. (right) The final M2 with τ -transition
and varB removed, representing exclusively the local
behavior.

4. ILLUSTRATIVE EXAMPLE

Taking the example discussed before, the working of the
algorithm will be illustrated here.

Assume that there exists a simulation of the example as
described in Section 3.2, and that the starting state of the
simulator is known; that is, the initial global state q0 is
defined. Assume further that the PSH of the example is
defined to be:

• M = {M1,M2, B},
• E(M1) = {load1, unload1},
• E(M2) = {load2, unload2},
• E(B) = {unload1, load2},
• S(M1) = {varM1},
• S(M2) = {varM2, varB},
• S(B) = {varB},

where, compared to the more generic PSH presented in
Section 3.3, variable varB has been omitted from S(M1)
and variables varM1 and varM2 have been omitted from
S(B). The variable varB could have been omitted also
from S(M2) but has been kept to illustrate how τ -tran-
sitions are generated and how they are removed in the
final result. This simplification of the PSH is possible due
to each module being very basic and only including a single
looping sequence with no alternative behavior. Generally,
a PSH cannot be simplified as much as in this case, but
there are usually some variables that can be omitted in
order to improve efficiency.

Sending the above PSH as input to the MPL will result
in the modular plant to be learned, including the buffer
specification.

First, the Main procedure generates the initial search
queueQG, startsModuleBuilder(M1),ModuleBuilder(M2)
andModuleBuilder(B), representing the two machines and
the buffer. The search is then initiated by running the
Explorer . After this, the work is performed asynchronously
in the individual processes, while the Main procedure
just waits for the search to terminate. For simplicity of
illustration the description of the execution is divided into
iteration steps, where each step includes one iteration of
the main loop in Explorer followed by one iteration of the
main loop in each ModuleBuilder. For each step, the status
of modules are illustrated by figures 5-10.

Recall from Section 3.2 that a global state in this example
is given by the state vector 〈varM1, varM2, varB〉. Based
on the state mapping of the PSH defined above, we know
that the modules M1, M2 and B have local state vectors
〈varM1〉, 〈varM2, varB〉 and 〈varB〉, respectively.



Input: An interface to the simulator as specified in Section 3.2, the
initial global state, q0, of the system, and a PSH
H = {M,E, S}.

Result: A set G of modular plant components, Gm ∈ G, ∀m ∈M .
begin

Procedure Main
QG ←− {q0}
- Run ←− true
foreach m ∈M do

- run ModuleBuilder(m)
end
- run Explorer()
- Wait until QG is empty and all ModuleBuilders are
waiting

- Run ←− false
- Collect Gm returned by ModuleBuilders into a set G
- Remove τ -transitions in all modules contained in G and
their corresponding variables

return G
Procedure Explorer

while Run do
for q ∈ QG do

for σ ∈ Σ do
- find q′ by executing σ from state q in the
simulator

- Broadcast the transition 〈q, σ, q′〉
end
- Remove q from QG

end
end

Procedure ModuleBuilder(m)
Q(m)←− {Pm(q0)}, T (m)←− ∅
while Run do

if (q, σ, q′) received then
V ′ ←− {v ∈ V | q(v) 6= q′(v)}
newState←− False;
if σ ∈ E(m) or S(m) ∩ V ′ 6= ∅ then

σ′ ←− if σ ∈ E(m) then σ else τ
T (m)←− T (m) ∪ {(Pm(q), σ′)→ Pm(q′)}
if Pm(q′) /∈ Q(m) then

Q(m)←− Q(m) ∪ {Pm(q′)}
newState←− True

end
end
if newState then

QG ←− QG ∪ {q′}
end

else
“waiting for broadcasts”

end
end
return Gm

end
Algorithm 1: The Modular Plant Learner to learn a
modular plant model from a simulation model and a PSH.

Initialization After initialization by Main, QG = {q0}
with q0 = 〈Idle, Idle, Empty〉, Q(M1) = 〈Idle〉, Q(M2) =
〈Idle, Empty〉, and Q(B) = 〈Empty〉

Idle1 Empty.Idle2 Empty

Fig. 5. Initialization. (left) M1, (mid) M2, and (right) B.

Iteration 1

• Explorer : Expanding QG yields a single possible tran-
sition: t = (〈Idle, Idle, Empty〉, load1) −→ 〈Working,

Idle, Empty〉. This is then being broadcast to the
three ModuleBuilders.
• ModuleBuilder(M1): Since varM1 ∈ S(M1) is changed

by t from Idle to Working and load1 ∈ E(M1), a local
transition (〈Idle〉, load1) −→ 〈Working〉 is added to
T (M1), the target state 〈Working〉 is added to Q(M1)
and the global target state is added to QG.
• ModuleBuilder(M2): No local transition is added to
M2.
• ModuleBuilder(B): No local transition is added to B.

Idle1 Working1

load1
Empty.Idle2 Empty

Fig. 6. Iteration 1. (left) M1, (mid) M2, and (right) B.

Iteration 2

• Explorer : Expanding QG yields, again, a single tran-
sition: t = (〈Working, Idle, Empty〉, unload1) −→
〈Idle, Idle, Full〉.
• ModuleBuilder(M1): Since varM1 ∈ S(M1) is changed

by t from Working to Idle and unload1 ∈ E(M1),
a local transition (〈Working〉, unload1) −→ 〈Idle〉 is
added to T (M1) and the global target state is added
to QG.
• ModuleBuilder(M2): Since varB ∈ S(M2) is changed

by t from Empty to Full and unload1 /∈ E(M2), a
local transition (〈Idle, Empty〉, τ) −→ 〈Idle, Full〉 is
added to T (M2) and state 〈Idle, Full〉 is added to
Q(M2).
• ModuleBuilder(B): Since varB ∈ S(B) is changed by
t from Empty to Full and unload1 ∈ E(B), a local
transition (〈Empty〉, unload1) −→ 〈Full〉 is added to
T (B) and state 〈Full〉 is added to Q(B).

Working1Idle1

unload1

load1

Empty.Idle2

Full.Idle2
tau

Empty Full

unload1

Fig. 7. Iteration 2. (left) M1, (mid) M2, and (right) B.

Iteration 3

• Explorer : Expanding QG yields two transition: t1 =
(〈Idle, Idle, Full〉, load1) −→ 〈Working, Idle, Full〉
and t2 = (〈Idle, Idle, Full〉, load2) −→ 〈Idle,
Working, Empty〉.
• ModuleBuilder(M1): Even though transition t1 does

change a variable connected toM1, the corresponding
local transition is identical to what was previously
seen in iteration 1, since only variable varM1 is con-
sidered, and adds no local transition to M1. Transi-
tion t2 adds no local transition to M1.
• ModuleBuilder(M2): Transition t1 adds no local tran-

sition toM2. Since both variables that are changed by
t2 are in S(M2) and load2 ∈ E(M2), a local transition
(〈Idle, Full〉, load2) −→ 〈Working, Empty〉 is added to
T (M2), state 〈Working, Empty〉 is added to Q(M2)
and the global target state is added to QG.
• ModuleBuilder(B): Transition t1 adds no local tran-

sition to B. Since varB ∈ S(B) is changed by t2 from
Full to Empty and load2 ∈ E(B), a local transition
(〈Full〉, load2) −→ 〈Empty〉 is added to T (B).



Working1Idle1

unload1

load1

Empty.Working2Empty.Idle2

Full.Idle2
tau load2

FullEmpty

load2

unload1

Fig. 8. Iteration 3. (left) M1, (mid) M2, and (right) B.

Iteration 4

• Explorer : ExpandingQG yields, again, two transition:
t1 = (〈Idle, Working, Empty〉, load1) −→ 〈Working,
Working, Empty〉 and t2 = (〈Idle, Working, Empty〉,
unload2) −→ 〈Idle, Idle, Empty〉.
• ModuleBuilder(M1): Transition t1 is the same is iden-
tified in iteration 3 and adds no local transition toM1.
Transition t2 adds no local transition to M1.
• ModuleBuilder(M2): Transition t1 adds no local tran-
sition toM2. Since both variables that are changed by
t2 are in S(M2) and load2 ∈ E(M2), a local transition
(〈Idle, Full〉, load2) −→ 〈Working, Empty〉 is added to
the module, but the target state has already been seen
so no state is added to Q(M2) or QG.
• ModuleBuilder(B): No local transition is added to B.

Working1Idle1

unload1

load1

Empty.Working2Empty.Idle2

Full.Idle2
load2

unload2

tau

FullEmpty

load2

unload1

Fig. 9. Iteration 4. (left) M1, (mid) M2, and (right) B.

Termination Since QG is now empty, the algorithm can
terminate. The learning is now complete and, following
the discussion in Section 3.4, the final modular plant
model, shown in Figure 10, is computed by removing all
τ -transitions and all variables that are changed by them.

Working1Idle1

unload1

load1

Working2Idle2

unload2

load2

FullEmpty

load2

unload1

Fig. 10. Final modular system. (left) M1, (mid) M2, and
(right) B.

5. CONCLUSION

This paper presented an approach to learn a modular
discrete-event model of a system using a simulation of it.
To this end, the Modular Plant Learner is presented along
with the required simulation interface and a PSH that
makes learning of a modular model possible. Furthermore,
an example demonstrates the working of the presented
algorithm. The resulting plant model can be used along
with user defined specifications to synthesize a supervisor
using existing synthesis algorithms (Malik et al., 2017).

The accuracy and performance of this method depends
upon the defined PSH. Defining a correct PSH is crucial
and the most difficult aspect of using this method, as it
relies on the knowledge, creativity, and experience of the
engineer. Further research on the procedure to define the
PSH is needed.

Additionally, the natural next step is to learn a modular
and compositional supervisor directly instead of the plant
model (Mohajerani et al., 2014; Flordal et al., 2007), as
well as to learn richer formalisms, in particular Extended
Finite State Machines (Malik et al., 2011).
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