
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Towards Automatic Generation of Formal Models for
Highly Automated Manufacturing Systems

ASHFAQ FAROOQUI

Department of Electical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Towards Automatic Generation of Formal Models for
Highly Automated Manufacturing Systems
ASHFAQ FAROOQUI

c© ASHFAQ FAROOQUI, 2018.

Technical report number: R006/2018
ISSN 1403-266X

Department of Electical Engineering
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone + 46 (0)31 – 772 1000

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2018

to those who seek

Abstract
The manufacturing industry is undergoing a digital revolution, often referred to
as Industry 4.0. The aim of this revolution is to transform the factories into, so
called, smart factories. These smart factories will be modular, decentralized, and
interconnected, to achieve higher level automation and flexibility. Additionally,
a smart factory will have a digital twin, a virtual replica that allows testing, mon-
itoring, and visualization of the factory behavior. As these factories are aimed to
be completely automated, ensuring correctness and safety of the control logic in
each sub-system of the factory is of utmost importance.

The need for having digitalized tools that support operators and engineers
was identified in a survey that was conducted to understand the problems faced
during maintenance of manufacturing systems. To this end, this thesis provides
an architecture that can be applied on old legacy systems as well as new state-
of-the-art systems to collect data from the factory floor. The data obtained can
be visualized in the form of Gantt charts to help operators keep track of the
execution of the station. Furthermore, a model that captures the behavior of the
system can be created by applying Process Mining algorithms to the collected
data.

Model-based techniques have shown to be beneficial in developing control
logic for highly automated and flexible manufacturing systems, as these tech-
niques offer tools to test and formally verify the control logic to guarantee its
correctness. These formal tools operate on such a model of the behavior of the
system. However, manually constructing a model on which these tools can be
applied is a tedious and error prone task, seldom deemed to be worth the effort.
Thus, supporting engineers to build models will improve the adoption of formal
tools within the manufacturing industry.

In order to obtain a formal model during the early development phase of the
manufacturing system, this thesis studies the possibility to automatically infer a
model of a system by interacting with its digital twin. The suggested L+ algo-
rithm, an extension of the well-known L∗ algorithm, shows that it is possible to
automatically build formal models in this way. Additionally, certain shortcom-
ings are identified and need to be addressed before being able to these methods
in a practical setting.

Keywords: Formal Methods, Industrial Automation, Automata Learning, Visu-
alization, Operations

ii

Acknowledgments

When I embarked on this long and lonely journey exploring the realms of academia
as a PhD student, I had not anticipated the way it would transform me. Now, here
I am at the half-way mark eager to move ahead; but stopping to reflect upon my
metamorphosis so far, and those that have contributed to this metamorphosis.
Like in all journeys, the people encountered have left an impact; some more than
others, but each profound and beautiful in their own ways. And to each, I owe a
debt of gratitude. This journey would certainly not have been possible without
the guidance, support, and patience of many important people.

First of all, I would like to thank my supervisor Martin Fabian. Your ability
to ask the most pressing questions and provide blunt and honest feedback has
helped me mature as a researcher. The detailed comments on the nitty-gritties
of writing have helped me develop my skills as a writer, and for that, I am ever
grateful. You have been an impeccable example of what a supervisor must be,
not just for the guidance and support you provide, but for teaching me the what,
why, and how, of supervision.

I would also like to thank my co-supervisor Petter Falkman for, firstly, for
offering me this opportunity to enter academia. Secondly, and more importantly,
for helping me keep my work anchored by helping me find use cases for all my
ideas.

Håkan Pettersson from Volvo Cars Corporation was a great host during my
short stint at Volvo Torslanda. Thank you!

My gratitude to Fredrik and Kristoffer for the insightful discussions that have
helped change my perspectives at times I needed to most. To all the present and
former members of the “discrete klubb” a big thank you for all the interesting
discussions and support in different forms.

Stephen King says “The scariest moment is always just before you start,” I
am grateful to Raghav, Charul, Martin (Viktorsson), Per-Lage, and Patrik who
not just inspired me to embark on this journey but whose support helped me get
over the scariest times.

When one has not written a thesis, the customary acknowledgments to the
author’s family seems meaningless, but when one has spent long weekends and
evenings absent from family activities, it reaches its full meaning. This journey

iii

ACKNOWLEDGMENTS

would have been impossible without the constant support of loved ones. My
family, though far away, are a source of strength and support. I am forever
grateful to my parents for being ever so supportive in everything I have done.
Tania, my wife, has been by my side through the ups and downs of this journey.
More importantly, she has helped me learn the beauty of balance; the balance
that has helped sustain this journey; the balance that has made this journey even
more beautiful. Thank you!

Lastly, a big cheers to the Free Software communities, chiefly, Manjaro –
my platform for a few years now; Emacs – for being everything but a good text
editor; And, LATEX– for making writing tedious but beautiful!

Ashfaq Farooqui
Göteborg, August 2018

This work has been supported by Vinnova FFI VIRTCOM (2014-01408),
ITEA3 VINNOVA ENTOC (2016-02716), VINNOVA LISA 2 (2014-06258),
and VR SyTeC (2016-06204).

iv

List of Publications

This thesis is based on the following appended papers:

Paper 1 Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin Fabian.
Error Handling Within Highly Automated Automotive Industry: Current
Practice and Research Needs. 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), 2016, Berlin,
Germany.

Paper 2 Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian.
From Factory Floor to Process Models: A Data Gathering Approach to
Generate, Transform, and Visualize Manufacturing Processes. Submitted
for possible journal publication. 2018

Paper 3 Ashfaq Farooqui, Petter Falkman, and Martin Fabian. Towards Auto-
matic Learning of Discrete-Event Models using Queries and Observations.
Submitted for possible journal publication, 2018

In what follows, these papers will be referred to as Paper 1, Paper 2, and
Paper 3, respectively. The individual contributions of each paper are outlined in
Chapter 4.

Other publications
The following publications, authored by the author of this thesis, are relevant but
not included in the thesis:

Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian.
Real-time Visualization of Robot Operation Sequences. 2018 IFAC Sym-
posium on Information Control Problems in Manufacturing (INCOM), 2018,
Bergamo, Italy.

Ashfaq Farooqui, Petter Falkman, and Martin Fabian. Towards Auto-
matic Learning of Discrete-Event Models from Simulations. 14th IEEE
Conference on Automation Science and Engineering (CASE), 2018, Mu-
nich, Germany.

v

vi

Contents

Abstract i

Acknowledgments iii

List of Publications v

Contents vii

I Introductory Chapters xi

1 Introduction 1
1.1 Research Questions . 3
1.2 Objective and Contribution . 4
1.3 Method . 5
1.4 Outline . 5

2 The Broader Picture 7
2.1 The New Workflow . 8
2.2 Virtual Commissioning . 10
2.3 Modeling Operations . 10
2.4 Formal Methods . 10

3 Inference of Formal Models 13
3.1 Grammar Inference . 14

3.1.1 Passive Learning . 14
3.1.2 Active Learning . 16

3.2 Process Mining . 18

4 Summary of Contributions 21

5 Concluding Remarks and Future Work 23

vii

CONTENTS

Bibliography 27

II Included Papers 33

Paper 1 Error Handling Within Highly Automated Automotive Indus-
try: Current Practice and Research Needs. 37
1 Introduction . 37

1.1 Contribution . 38
1.2 Outline . 39

2 Background . 39
2.1 Error handling process 39

3 Survey summary . 40
3.1 Error scenarios . 40
3.2 Measures to avoid error handing scenarios 42

4 Future trends within manufacturing 42
5 Research needs . 43
6 Conclusion . 45
7 Bibliography . 45

Paper 2 From Factory Floor to Process Models: A Data Gathering Ap-
proach to Generate, Transform, and Visualize Manufacturing Pro-
cesses. 49
1 Introduction . 49

1.1 Contribution . 51
1.2 Outline . 51

2 Software Architecture . 52
2.1 Pipeline components 52
2.2 Message bus . 53

3 Robot event pipeline . 54
3.1 ABB endpoint . 55
3.2 Transformation endpoints 56
3.3 Services . 59

4 Towards creating models . 61
4.1 Process Mining . 62
4.2 Identifying different product cycles 63
4.3 Operation view . 64
4.4 Resource view . 66

5 Conclusions and Future work 67
5.1 Future work . 67

6 Acknowledgements . 68
7 Bibliography . 68

viii

CONTENTS

Paper 3 Towards Automatic Learning of Discrete-Event Models using
Queries and Observations. 75
1 Introduction . 75

1.1 Outline . 77
2 Prerequisites . 77

2.1 Alphabets, Words and Languages 77
2.2 Deterministic Finite State Automata 77
2.3 Operations . 78

3 Background . 78
3.1 Passive learning . 79
3.2 Active Learning . 80

4 The L∗ Algorithm . 82
5 Towards Integrating Active and Passive learning 83
6 L+ learning applied to a robotic arm 87

6.1 Defining the system 88
6.2 Results and Discussions 88

7 Conclusion and Future work 91
8 Bibliography . 92

ix

x

Part I

Introductory Chapters

Chapter 1

Introduction

The complexity of the manufacturing industry constantly increases to keep up
with advancements in technology, market trends, legislative requirements, and
most of all high quality products. Industry 4.0 [1], also called the fourth indus-
trial revolution, can be seen as a collection of various technologies – Internet of
Everything (IoE), Cyber-physical Systems (CPS), and smart factories – to create
the next generation of industrial systems [2]. From the design principles of In-
dustry 4.0 provided by Hermann et al. [2], distributed modular systems are key
to build these next generation factories. The different distributed modules in an
Industry 4.0 setting are normally provided by different manufacturers and have
different properties, but when put together need to work seamlessly. In general,
the systems developed consist of several industrial robots supported by convey-
ors and fixtures, and are designed to be completely automated with minimal
manual handling. The system design must not only take into account flexibility,
efficiency, and development time, but also account for fault tolerant behavior.

Development of these complex automated manufacturing systems is a de-
manding task. In the automotive industry, the development process typically
begins with the company describing the product and design requirements. Based
on these requirements, suitable components are chosen and an overall layout is
decided on, followed by physically building the system. In parallel, the control
system is developed that is to control the physical system so as to manufacture
the desired product. Physically building the manufacturing station is commonly
known as physical commissioning. This includes installation of the physical sys-
tem consisting of robots, conveyors, fixtures, sensors etc., and the control sys-
tem that is responsible for control, supervision and coordination throughout the
production. The requirements specified are not always accurate and often am-
biguous. Hence, the resulting station undergoes several iterations before it can
be used in production. These iterations can significantly delay the time to market
and increase costs, thus they are undesirable.

In order to reduce time to market and save on costs in the long run, the use

1

CHAPTER 1. INTRODUCTION

of Virtual Commissioning (VC) [3] is rapidly increasing today. With VC, a sim-
ulation model of the station is first created using some simulation software, such
as Process Simulate from Siemens [4] or Experior from Xcelgo [5]. Then, the
different manufacturing scenarios are simulated to check if all requirements are
fulfilled. Furthermore, the control system can also be connected to the simula-
tion model and its logic can be tested. This is done to find and fix faults and bugs
in the control logic. Additionally, by visually simulating the manufacturing sys-
tem, errors due to collisions can be detected early on. Physical commissioning
is then done only after the VC model with the control function is acceptable. By
correcting most of the faults during the VC phase, unnecessary time need not be
spent testing the physical system. Thereby, production can start earlier.

However, both physical and virtual commissioning require the control logic,
which is there to ensure that the station works as intended and is safe to operate.
Thus, its correctness is of utmost importance. Since the requirements typically
keep changing during the development process, the control logic needs to be con-
tinuously updated and debugged, which makes its manual development a tedious
and error prone task.

One approach to manage this type of development process, with ever chang-
ing requirements, is to rely on mathematically well-defined formal methods [6].
By applying formal methods, it is possible to analyze and understand the system
in part and as a whole. Formal methods make use of computerized calculations
to analyze the system using a formal model, usually in the form of a discrete
event system (DES) [6], that models the system to be analyzed. Hence, engi-
neers can focus on defining their system and then use computerized algorithms
to analyze, verify, and validate the models.

While the use of formal methods eases the engineering task of building the
control logic, the burden instead gets placed on building the models. As a model
grows in size with incorporating more resources and their operation, the mod-
eling burden grows exponentially. To alleviate this, the models can be built
modularly, where the engineers build models of the respective resources and
their operations, and compose them in a mathematically well defined way into a
model of the overall system. In addition, modeling the requirements as DES, the
control logic can even be automatically generated by synthesis [6], so as to be
correct-by-construction, which further alleviates the risk of introducing errors.

The discussion provided above focuses on building models for the control
logic of new manufacturing stations. Building new systems are not done very
often, though, while changes to existing legacy systems are done daily in order
to improve their behavior, such as cycle time adjustment, bug fixing, etc., or on
a bigger scale to introduce new products or machinery. To be able to do this
in a secure way avoiding disruptions of existing behavior and the production on
the whole, manufacturers are interested in applying formal analysis and to test

2

1.1. RESEARCH QUESTIONS

changes before commissioning them to the physical system. However, a problem
here is that, more often than not, virtually commissioned or formal models do not
exist for legacy systems.

Manually creating the required models is hard and time consuming, requiring
a high degree of knowledge in formal methods and automation system design.
Incorrect or incomplete models are misleading and the use of formal methods
may serve no purpose. To benefit from the use of formal methods, in terms of
verification and synthesis of control logic, the task of building models needs to
be done correctly. In order to do so, this thesis proposes a way to automatically
create a model of the system using computerized tools.

1.1 Research Questions

This thesis aims to explore the following questions.

RQ1 How does the manufacturing industry generally handle errors and perform
maintenance? And what are the challenges faced?

Error recovery techniques have been studied in academia [7, 8, 9, 10, 11],
but these techniques have not really found their way into industrial prac-
tices. Identification of reasons for this disconnect might help bridging the
gap between academia and industry.

RQ2 How can operators be supported with tools and processes that will make
it possible to make more data driven decisions?

Maintenance of manufacturing systems is not an easy task. Decisions need
to be made, tracked, and evaluated. Manually doing so is burdensome and
often ineffective. Having digital tools to support operators can improve the
quality of maintenance [12].

RQ3 Is it feasible to automatically learn formal models of manufacturing sys-
tems? If so, what would be required to make it a reality?

Model-based techniques have shown to be useful for a variety of reasons.
The lack of usable models and the difficulty to create them manually is
a deterrent to using model-based techniques to build and maintain man-
ufacturing systems. Automatic creation of formal models has been stud-
ied [13, 14], but these algorithms are computationally heavy and have typi-
cally been designed for smaller applications. Recent advances in computer
technology have led to computationally powerful computers, and avail-
ability of advanced simulation tools, which might hold the key to making
it possible to learn a formal model of large manufacturing systems.

3

CHAPTER 1. INTRODUCTION

1.2 Objective and Contribution
The objective of this thesis is twofold. First, to highlight the problems faced
by the automotive industry related to maintenance and error handling. Then, to
propose methods, techniques, and tools to help during the commissioning and
production phase so as to increase quality and efficiency. This is achieved by the
following contributions:

• A survey to identify the problems faced by the industry and how these
problems are currently solved.

• A survey of ongoing state-of-the-art projects that provide a glimpse into
future manufacturing technologies.

• An approach to collect and transform data from the factory floor.

• Analysis and visualization of ongoing manufacturing processes in real-
time using Gantt charts, and creation of a behavioral model using Process
Mining.

• A study into methods that enable automatic generation of formal models
from a simulation model of the system using the L+ algorithm. The in-
sights gained from this study will help identify avenues that will allow
automatic creation of models for practical manufacturing systems.

The papers presented in this thesis build upon the ideas presented in this in-
troduction. Paper 1 highlights the common problems faced by the automotive
manufacturing industry with regard to error handling and presents work needed
to address these problems. An outcome of this study was the need to have access
to data from the factory floor to get a better understanding of the systems. Paper 2
presents a flexible and scalable architecture to collect and transform data from
the factory floor. This architecture can be applied to existing and new manufac-
turing stations. The resulting data is then transformed into a more understandable
abstraction in the form of operation descriptions. This data is then used to build
models of existing manufacturing stations using process mining techniques to
help improve and maintain the stations.

Paper 3 presents the possibility to build a formal model of a system from its
simulation model. The functions of the simulation model are modeled as inde-
pendent operations which can be executed from an external interface. The L+

algorithm, an extension of the L∗ algorithm [13], is interfaced to the simula-
tion software, where it can observe the state of the simulation. Then, by posing
queries the algorithm constructs a formal model capturing the behavior of the
system.

4

1.3. METHOD

1.3 Method
The outcome of this thesis is a set of activities and tools that can help build
more reliable and efficient manufacturing systems. Most of the work involved
implementing and testing the algorithms to demonstrate the applicability of the
proposed methods. From a more theoretical perspective, the main research ac-
tivity was to identify gaps in the field of automated modeling that will improve
the practical applicability of these methods.

In general, the method followed was to first, by interacting with industry rep-
resentatives find pressing problems that are faced by the industries; problems
related to error handling and, more specifically, modeling of automated man-
ufacturing systems, were considered. Then, solutions to these problems were
proposed by suggesting a method – as a set of activities – to follow, along with
accompanying algorithms. These algorithms were then implemented to demon-
strate and evaluate the possibility of applying them to real-world scenarios. The
evaluations showed that it is indeed possible to apply in practice the presented
approach. However, there are also some parts missing and parts that need to be
improved. These are summarized in Chapter 5.

1.4 Outline
This thesis is divided into two parts. This first part contains introductory chapters
that aim to help the reader to better understand the ideas and concepts discussed
in the included papers, and also to provide a direction of the research work. The
second part contains the included papers.

This introduction presents a high-level process of building a manufacturing
station and highlights the problems normally faced by engineers involved with
building and maintaining these stations. Chapter 2 puts the thesis into perspec-
tive by positioning this work in the broader picture. To this end, existing industry
practices and challenges are presented, followed by a new updated work-flow
that aims to support engineers and operators during the development of a man-
ufacturing system. Chapter 3 introduces the reader to the field of automatically
inferring formal models. Chapter 4 provides a summary of the included papers.
Finally, some concluding remarks in Chapter 5 sum up the work and provide a
glimpse of future work.

5

6

Chapter 2

The Broader Picture

The aim of this chapter is to provide a context and help position the contribution
of this thesis within the broader picture. In doing so, this chapter will give a gen-
eral overview of existing methodologies followed during the development of a
manufacturing system, and some of their challenges. Additionally, this chapter,
will outline the new methodology that is proposed to help mitigate the chal-
lenges. The tools required to achieve the suggested methodologies in reality are
also briefly introduced.

The traditional procedure followed during the development of a manufac-
turing system starts with a pre-study on the product that will be manufactured.
The pre-study results in a set of requirements that need to be fulfilled by the
manufacturing system; a bill of materials that contains the components, such as,
robots, conveyors, fixtures, etc, that need to be procured; and the system layout
representing the physical placements of those components. The bill of materials
is procured and the physical building of the system is started, in smaller func-
tional parts or as a whole. Based on the requirements, different tasks and actions
needed to manufacture the product are planned. This is known as process plan-
ning [15, 16]. The end result of the process planning stage is the generation of
the control logic. This control logic is responsible for controlling the resources
in the manufacturing system so as to fulfill the objective of the manufacturing
system in an efficient and safe manner. The control logic then needs to be tested
on the physical system, which is usually done in two phases. In the first stage,
components are tested individually or in groups. The second stage is performed
after the system is physically commissioned. Here, testing is done until all re-
quirements are satisfied, and the system behaves satisfactorily.

The consideration of control logic later in the development phase has sev-
eral negative consequences resulting in high financial costs and loss of time. As
seen in Paper 1, fixing software bugs might, as a side effect, introduce more
bugs. Additionally, performing the tests on the physical system increases the
risk of collisions and component failures. During the survey conducted in Pa-

7

CHAPTER 2. THE BROADER PICTURE

per 1 it was also found that the initial testing done at the line manufacturers
site was functional testing. Later, only when the complete system is physically
commissioned, complete end-to-end testing is performed. Directly testing on the
physical system might result in breakage and may require a fresh order of com-
ponents. All these factors add to the unnecessary effort, cost, and time expended
during the physical commissioning phase.

Development of manufacturing systems is just the first phase of its life-cycle.
Building these stations is expensive, and the manufacturing company expects
them to last for several years to even out the cost. Hence, these systems need to
be well maintained to ensure good productivity during their life-cycle. Paper 1
presents the current industrial state of maintenance procedures. The concluding
points in Paper 1 are to have a work-flow that incorporates ways to fix bugs in the
software safely, and a possibility to digitalize the system to be able to use digital
tools to monitor, visualize, and reason about it. Hence, the tools and processes
created in the new work-flow need to not only account for a better manufacturing
process but also need to cater to maintenance requirements.

2.1 The New Workflow
The Division of Systems and Control, at the Department of Electrical Engineer-
ing at Chalmers University of Technology, has been active in developing a work-
flow and tools to support the development of manufacturing systems. A high
level work-flow that is pursued at the department is presented in Figure 2.1. This
new work-flow starts similar to the old work-flow by identifying the bill of ma-
terials. But the process planning starts already at the initial phase along with the
bill of materials to identify the process, tasks and actions needed, resulting in
the bill of processes. Based on the bill of processes, the components identified
are digitally created in a 3D simulation environment. These digital replicas are
placed according to the required system layout. At this point, potential collisions
can be identified, and the layout can be updated to ensure safe operation. The en-
gineers then take the bill of processes and convert this to actions to be performed
in the simulation software. These simulated actions need to be transformed into
control logic that can be run on a Programmable Logic Controller (PLC). The
system is virtually commissioned by connecting the PLC to the simulation tool
to verify functionality and test for errors. At this point, the bill of materials
is finalized, and the components are procured. Following which the system is
physically commissioned.

During the development phase, requirements are constantly changing due to
new insights. Hence, the control logic needs to be constantly updated and tested
to ensure that the requirements are met. One approach is to use mathematically
well-defined formal methods to verify the behavior of the system and to generate

8

2.1. THE NEW WORKFLOW

BOM/mBOM

Bill of Processes

Tooling

Simulation

PLC code

generation

Virtual

Commissioning

Physical

Commissioning

Figure 2.1: The new workflow

the control logic. With the use of formal methods, the focus is shifted from
manually developing and testing the control logic, to developing a model that
describes the behavior of the system.

To build a formal model the engineer needs to consider the level of abstrac-
tion needed to be described by the model. By modeling at a very low level the
engineer risks making the model unmanageably large. On the other hand, by
modeling at a high level, a number of details could be missed, and the model
might not be usable. Hence, finding a level of abstraction that suits the system
is key to developing a model. Once a suitable level of abstraction is decided,
the engineer has to ensure that the model correctly captures the behavior. This is
where this thesis contributes towards the development of manufacturing systems.
It looks at possibilities to automatically infer a behavioral model of the system.

A by-product of the defined work-flow is the availability of a digital twin –
a digital replica of the physical system. This digital twin behaves in the same
way as its physical counterpart and can be used for monitoring, testing, and
modifications. To enable the effective use of a digital twin, additional tools need
to be created that can synchronize between the physical system and its digital
twin. These tools need to capture and store operating data from the physical
system for further processing.

The remainder of this chapter will introduce the different components needed
to follow this thesis, specifically, virtual commissioning and formalisms for for-
mal methods.

9

CHAPTER 2. THE BROADER PICTURE

2.2 Virtual Commissioning

Simulation technology has come to a point where it is now possible to simulate
systems at the sensor level. Software programs such as Process Simulate [4],
Xcelgo Experior [5], and ABB Robot studio [17] are capable of simulating con-
veyors, fixtures, robots, and even humans, to a relatively high level of accuracy.

These simulation tools can also be controlled externally, for example, by us-
ing a PLC. Such a setup would constitute virtual commissioning, where a digital
replica of the system is controlled by the PLC code that will eventually run on
the shop floor controlling the physical system.

In order to be able to infer a model of the system, which is the aim here,
the learning algorithm – the learner, introduced later in this thesis – requires
an interface to the virtually commissioned system. This interface must allow the
learning algorithm to execute actions which are at a pre-defined abstraction level,
and allow the learning algorithm to observe the output of the virtual model. An
example of such an interface is the OPC-UA [18] standard for communication.
This standard is supported by many component vendors and can be used with the
virtual and physical system. The OPC-UA, allows control and observation at the
input/output level, and also facilitates observation of internal variables. Hence,
it is an ideal candidate to use as an interface for the learning algorithm.

2.3 Modeling Operations

As discussed in Section 2.1, choosing a sufficiently moderate level of abstraction
becomes important to create a model. The work in this thesis uses the abstraction
of operations [19]. An operation is a task performed in a manufacturing system
by one or more resources. Broadly, an operation can be defined as a set of actions
that change the state of the system to accomplish an objective. The level of detail
of an operation is not fixed, it could be used to define an update in one resource
or can affect several resources. Guards are used to determine when a operation
is allowed (or not allowed) to execute. These operations, along with their guards,
are programmed such that they can be executed by the control system. A more
formal definition is provided in Paper 3, Section 2.3.

2.4 Formal Methods

Formal methods are design techniques that use mathematical models to build
software and hardware systems. These methods make use of mathematical proofs
to ensure correctness. As systems become more complicated and safety becomes
an important concern, a formal approach to the system design offers a certain

10

2.4. FORMAL METHODS

level of insurance.
To apply formal methods, designers need to have access to a formal model

that describes the behavior of the system. One of the many ways to create such a
model is to make use of finite-state machines (a.k.a finite-state automata or sim-
ply automata) [20], which are commonly used to model discrete-event systems.
The system is then abstracted into events and states, where the occurrence of an
event moves the system from one state to another. The original state of the sys-
tem, before the occurrence of any event is the initial state. A particular sequence
of events can lead the system to some desired state, such a desired state is called
an accepted state and the sequence of events an accepted sequence.

When talking about discrete-event systems as finite-state machines a sequence
of events is referred to as a word. The set of words that are accepted by the finite-
state machine is the accepted language. The automaton represents the grammar
of the system; that is, when presented with a word, the grammar decides the va-
lidity of this word. Formal definitions of words and languages are provided in
Paper 3, Section 2.

11

12

Chapter 3

Inference of Formal Models

Consider a small but realistic example consisting of a robot and a machine, as
seen in Figure 3.1a. In this system, the robot takes the part (part A) from the
pallet and puts it on the machine. The machine then loads the part, processes it,
and unloads it. In the meantime, the robot can take the next part or do nothing.
But the robot has to wait until the machine has unloaded its part before putting
the next part on the machine. An automaton representing this setup is shown in
Figure 3.1b, from which it is seen that the system is accepting as long as there is
no part loaded in the machine.

Part A

(a) Representation of the physical system.

m1.r1.s1

m1.r2.s1

take

m1.r1.s2

m1.r2.s2

take

m2.r1.s3

load

put

m2.r2.s3

load

unload

take

unload

(b) Representation of the system behavior.

Figure 3.1: A robot and a machine. The robot takes a part and puts it on the
machine. The machine loads the part, and after processing unloads it.

Assume now that we do not have the model of this system, and want to obtain
the model without manually building it. That is, we are provided access to the

13

CHAPTER 3. INFERENCE OF FORMAL MODELS

actual physical system as in Figure 3.1a and would like to infer a model of it as
seen in Figure 3.1b. There exist tools and techniques that would help to infer
such models. Broadly, models can be inferred using Grammar Inference [21]
or Process Mining [14] techniques.

The aim of this chapter is to provide a glimpse into existing ideas that deal
with automatically inferring models. Both the fields of study, Grammatical In-
ference and Process Mining, are well established and quite vast. It is beyond the
scope of this thesis to cover the details of the different algorithms. However, the
general ideas employed in each of the fields will be discussed to equip the reader
with the basics concepts. This will help interested readers to further delve into
the details.

3.1 Grammar Inference

Grammar Inference (GI) has been studied both as a theoretical problem, where
its goal is to uncover some hidden function, or as a practical problem of attempt-
ing to represent some knowledge as an automaton. GI finds its origin in various
fields of study: computational linguistics, machine learning, formal learning the-
ory, pattern recognition, and computational biology. Hence, it is also known by
different names depending on the field: Automata Learning, Grammar Induc-
tion, Grammar Learning, etc. Though the different names can have different
connotations, they all refer to similar ideas and processes.

The majority of GI algorithms work on generalizing some form of knowl-
edge about the system to be learnt. The learning algorithm referred to as the
learner, internally creates a representation of this knowledge. This representa-
tion is continuously refined and generalized to satisfy certain properties specific
to that learner. When the learner is satisfied with the generalization reached, its
internal representation can be converted into some meaningful representation.
Of the many methods studied and developed under GI, several of them deal with
learning finite-state machines. These methods can be classified as Passive learn-
ing or Active learning.

In-depth surveys of GI techniques are provided by [22, 23, 24].

3.1.1 Passive Learning

Passive Learning, sometimes referred to as Informed Learning, is a setting in
which labeled data is provided to the learner, and the learner is tasked to find
an automaton that generalizes this data. This data is usually an observation log
from the system and consists of words. These words are labelled as accepted (or
rejected) if they belong (or do not belong) to the accepted language.

14

3.1. GRAMMAR INFERENCE

Passive learning algorithms start by first generating a hypothesis from the
available data. This is done by constructing a prefix tree acceptor (PTA), which
is a tree-like automaton constructed by looking at the accepted words in the data.
This PTA can be constructed in linear time and contains no loops or converging
paths. In the example above, accepted words could be the set {〈take〉, 〈take, put,
load, unload〉, 〈take, put, take, load, unload〉}, and non-accepting words could
be {〈take, put〉, 〈take, put, load〉, 〈take, put, take〉}. The first step is to construct
the PTA using the accepted data. The PTA obtained is a crude representation of
the available data as seen in Figure 3.2.

The next step is to refine the PTA. The method of building the PTA and then
refining it using non-accepting data samples is called regular positive and nega-
tive inference [25]. This method provides a basis for more advanced algorithms
that focus on the refinement phase. A number of different strategies for PTA re-
finement have been presented in the literature [21, 26, 27, 28]; a detailed survey
of those is beyond the scope of this thesis.

The most common refinement technique, though, is state merging [29]. The
merging of states usually consists of three stages, the first is the search to iden-
tify the states to be merged; then the actual merging, where the merged states are
represented by a single state yet retain the incoming and outgoing transitions;
the final stage is called promotion, which keeps track of the states already tested
and the next states to be evaluated. Several algorithms have been suggested to
efficiently perform the search, merging and promotion. In [27] a general sur-
vey of state merging algorithms is presented where they are classified as Exact
Algorithms or Approximate Algorithms.

Exact algorithms aim to create a model that exactly represents the input data.
Some such algorithms are MMM [30], BICA [31], and EXBAR [32], all of which
start with a basic trivial model as initial PTA. The algorithms then start looking
for states to merge. On every merge done the algorithms search the input data to
check if the samples are consistent with the automaton. Searching through the
input data for inconsistencies is expensive. The algorithms mentioned above use
different techniques and heuristics to perform this search efficiently.

q1 q2 q3 q4q4 q5

q6 q7 q8

take put load unload

take

load unload

Figure 3.2: The PTA generated from the set of accepted words {〈take〉, 〈take,
put, load, unload〉, 〈take, put, take, load, unload〉}

15

CHAPTER 3. INFERENCE OF FORMAL MODELS

Approximate algorithms, on the other hand, rely on heuristics to provide
an automaton that approximately describes the input data. Examples of these
algorithms are EDSM [33], SAGE [34], and ED-BEAM [32]. These algorithms
work in similar ways to their exact counterparts, the difference lies in the way
they perform the state merging. Additionally, these algorithms keep updating the
PTA by backtracking and improving previous merges.

In order to obtain an accurate model of the system, the learner needs to have
access to accepting and non-accepting data [35]. In a manufacturing context
access to accepting data is usually never a problem. However, there does not
seem to exist ways to obtain non-accepting data. Hence, the models identified
using passive learning methods are limited to the fact that they represent only the
observed behavior. One major problem when applying passive algorithms is the
state-space explosion. It has been proved that learning from sampled data is NP-
complete [35]. Thus, most of the algorithms are created and tested on problems
with a significantly smaller state-space [27] compared to what is needed in a
manufacturing setting.

Paper 3 uses ideas from passive learning in conjunction with active learning
methods to obtain a more accurate model of the system.

3.1.2 Active Learning

Active Learning, or learning with queries, is a setting where it is possible to
interact with an oracle. The algorithms available under active learning make the
assumption that there is a minimal adequate teacher, which is an oracle that can
answer queries. An active learner poses queries to the oracle and based on the
responses constructs a model.

The analogy of a teacher and student fits well to explain the working of gen-
eral active learning techniques. The student is the learner, and the teacher is the
oracle. The student is given prior knowledge about the different events possi-
ble, in the example above it would be the set {take, put, load, unload}. And,
the student is allowed to pose two types of queries to the teacher. The first type
is about the membership of a given sequence of events; to this the teacher can
respond positively if the sequence results in an accepted state, else the response
is negative. The second type of query, called equivalence query, occurs when
the student presents a hypothesis model to the teacher. If the teacher responds
positively, that is, acknowledges that the model learnt by the student represents
the actual system fairly accurately, then a model is found and the learning termi-
nates. Else, in case the teacher finds the model incorrect, the student is presented
with a counterexample – a sequence of events that is allowed in the hypothesis
but not in reality, or vice versa. The student then updates its model to exclude or
include the behavior of the counterexample, and continues asking queries. This

16

3.1. GRAMMAR INFERENCE

process iterates until a fairly accurate model is found.
For the sake of an example, lets say the student starts by asking if 〈take〉

is a member; the teacher responds positively. If the student then proposes a
model with a single event, then since the model is invalid the teacher provides a
counterexample by giving, say, the sequence 〈take, put, load, unload〉 The stu-
dent will then take the presented counterexample into consideration, make new
queries, and eventually present a new hypothesis. This process continues until
the teacher decides that an acceptable model is found. The procedure highlighted
above is intended only to provide an analogy into the actual learning process and
to show how this type of learning is closer to how humans learn. The actual
algorithms are far more complex. One of the most fundamental active learn-
ing algorithms is the L∗ algorithm introduced by [13], a detailed explanation
for which is provided in Paper 3, Section 4. This algorithm is known to run in
polynomial time and guarantees termination [13].

The L∗ algorithm has been a starting point for most of the research in the
field of active learning [13]. From an algorithmic perspective, there have been
only a handful of improvements and new approaches suggested. Schapire et.
al. [36] improve the L∗ algorithm by handling counterexamples that include a
homing sequence when it is not possible to reset the target system. In the case
when a robot is allowed to explore its surroundings to infer a map, it is tedious to
always reset the robot to its initial position. Hence, Schapire et. al [36] present
an algorithm that creates a homing sequence. Using this homing sequence allows
the robot to infer its current state. Kearns and Vazirani [26] introduce the idea
of discrimination trees to internally represent the knowledge of the system. The
idea of discrimination trees is further explored by Malte et al. [37] who suggest
the TTT 1 algorithm.

The L∗ algorithm has been used successfully in practical settings to learn
automata. Active automata learning has been applied to verify communication
protocols using Mealy machines [38, 39]. By using a suitable abstraction inter-
face, Arts [40] learn IO automata. Other techniques are directed towards learning
models of software systems; Malte et al. [41] apply active automata learning to-
wards learning models of software programs modeled as register automata, while
Smeenk et al. [42] focus on learning embedded software programs.

The active learning algorithms assume the existence of an oracle. If a com-
puterized oracle would exist, then there would be no problem to solve, since the
model would be available in the oracle, and the task would then be to extract the
model from the oracle. However, with the advancement of technology and easy
availability of simulation software, it is possible to create a digital twin of the
actual system to play the part of an oracle. These simulations are built up of sev-

1The name is derived from Spanning Tree, Discrimination Tree, and Discriminator Trie; the
three concepts fundamental to the algorithm.

17

CHAPTER 3. INFERENCE OF FORMAL MODELS

eral functions that can be executed using an external interface to the simulation
software. For example, the event “take” would have a function that makes the
robot pick the part from the pallet, or “put” would place the part on the machine,
and so forth. The teacher is then no longer an oracle, but an interface to this
simulation. It can then reply to queries by simulating the given sequence. The
accepted states are then identified by observing the simulation, which could be
achieved by reading the internal variables of the simulation and defining a pred-
icate expression over these variables. This setup is further elaborated in Paper 3,
Section 6.

However, in order to be able to apply these techniques to learn models there
needs to be a way to find counterexamples. Queries for membership are fairly
easy to handle, equivalence queries on the other hand are proved to be an NP-
complete problem [43]. Hence, finding counterexamples is a bottleneck for ac-
tive learning methods. In the case when the model of an existing system is to
be created, which also has a virtually commissioned counterpart, Paper 3 inte-
grates active and passive learning methods and presents the L+ algorithm that
uses observation data from the actual system to find counterexamples.

3.2 Process Mining
Process mining [14] is a field of study comprised of process discovery, confor-
mance checking, and model enhancement. Process discovery, similar to passive
learning, aims at creating a process model that imitates the observed process.
The difference between process discovery and passive learning lies in their objec-
tives. While process discovery takes a more pragmatic approach towards build-
ing and analyzing the underlying process in large organization, passive learning
is a more theoretical method focusing on finding grammars that represent the
data. What sets process discovery apart from passive learning is its integration
with the other components of Process Mining, conformance checking and model
enhancement, for investigating and maintaining the process models.

Process discovery techniques are used to understand task flows in large or-
ganizations where tasks can be performed for various resources or individu-
als. To do this, these techniques rely on process logs as input. The mini-
mal requirement for the logs is a tuple containing <caseId, event name,
attributes>. Here the caseId is a unique identifier that identifies the case
being handled; in a manufacturing context it could be viewed as the product
on which operations are run. The event name identifies the task executed.
A number of other attributes, such as time stamps, the name of the re-
source that performs the operation, product variant, can be appended to improve
the analysis. The resulting output from a discovery algorithm is a work-flow
model that can be represented by formalisms such as Petri nets [44], Transition

18

3.2. PROCESS MINING

Graphs [45], or Business Process Model and Notation diagrams [46].
The basic idea, in almost all Process Mining algorithms, is to construct a

relationship table from the input logs. The relationship table contains informa-
tion about the position of each event relative to the other events. In the example
above, irrespective of the actual sequence of events, every product will log the
sequence 〈take, put, load, unload〉. The relationship table will thus reflect a
“directly follows” relation between the pairs 〈take, put〉, 〈put, load〉, and 〈load,
unload〉. Thus, the resulting work-flow model is a straight sequence of these
events. In a more complex setting, where there are different paths observed, the
relationship table can additionally describe relations such as parallel or arbitrary.

The process outlined above closely resembles the alpha algorithm [47], the
most basic algorithm in Process Mining. However, the alpha algorithm is not
immune to noise in the logs, and also cannot be applied to systems that contain
loops in their execution. Several advanced Process Mining algorithms have been
presented that tackle these problems. The Heuristic Miner [48], for example,
builds a relationship table that contains the number of times an event occurs
before or after other events. Then, using heuristics to normalize this table, the
algorithm constructs a model representing the different relationships. Another
such algorithm, the Fuzzy Miner [49], aims to find closely related patterns and
group them into clusters. In doing so, it becomes possible to not focus on the
details, thus an abstract process is presented for possible further analysis.

A model defining relations between events is not the only form of output
achievable from Process Mining. It is also possible to get a model from various
perspectives and analyze different properties. For instance, by logging the ex-
ecution time and executing resource for each event as additional attributes it is
possible to analyze the system for bottlenecks and resource utilization. To this
end, a model representing the relationship between the resources is first created.
Then by aggregating the time spent at each resource, this model can include the
time each resource is occupied.

Process mining has shown significant benefits in understanding underlying
task flows, bottlenecks, resource utilization and many other factors within large
corporations [50, 51], and has also proved beneficial in health-care [52, 53, 54] to
learn and improve the underlying processes. Within the manufacturing domain,
though, there has been only a handful of studies of applying Process Mining.
Yang et. al. [55] and Viale et. al. [56] present a method to apply Process Min-
ing on manufacturing data. While the former uses structured and unstructured
data generated from a manufacturing system along with operators or workers to
provide domain level knowledge, the latter works with definitions of the system
provided by domain experts to find inconsistencies between the model and the
actual process. Yahya [57] shares interesting insights into using process mining
to understand manufacturing systems using artificially created logs. However,

19

CHAPTER 3. INFERENCE OF FORMAL MODELS

there seem to be two main factors missing when aiming to apply Process Mining
to manufacturing systems:

1. There is a lack of methods to capture and collect usable data from the
factory floor.

2. There is a lack of a defined data structure/abstraction useful for generating
models from factory data.

Paper 2 uses Process Mining to analyze manufacturing systems by collecting
data from the factory floor. Section 2 of Paper 2 provides a general architec-
ture that generates an event stream of program pointer data from the robots in
a manufacturing system. Furthermore, the paper elaborates on transforming the
generated event streams into the usable abstraction of operations. This abstracted
data is used as input to Process Mining algorithms to obtain models and analyze
the system. Section 4.3 of Paper 2 discusses visualization from an operation per-
spective, where the relations between different operations are studied to identify
unique patterns that correspond to different products. Section 4.4 then shows the
use of Process Mining to visualize how the product flows between the resources.

20

Chapter 4

Summary of Contributions

This chapter provides a brief summary of the papers that are included as part of
this thesis.

Paper 1

Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin
Fabian.
Error Handling Within Highly Automated Automotive Industry: Cur-
rent Practice and Research Needs. 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
2016, Berlin, Germany.

This paper presents a study on error handling in the Swedish automotive manu-
facturing industry, specifically the body-in-white segment. To this end, a survey
was conducted with several industry partners to get a glimpse into what were the
most common errors encountered and the measures taken to avoid them. Addi-
tionally, the paper looks at ongoing research that is aimed towards making man-
ufacturing highly automated. Based on the survey with industrial partners and
ongoing research, the paper identifies future directions of work that will help in-
dustries handle error scenarios. Tool breakage, resource malfunctions, software
bugs, and emergency stops were a few of the most common issues faced in the
industry. To be equipped to handle these problems operators need to be well
trained. Therefore additional effort is required to ensure training handles the
standard scenarios. A common need towards alleviating the problems identified
is the digitalization of the system and its processes.

21

CHAPTER 4. SUMMARY OF CONTRIBUTIONS

Paper 2
Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin
Fabian.
From Factory Floor to Process Models: A Data Gathering Approach
to Generate, Transform, and Visualize Manufacturing Processes. Sub-
mitted for possible journal publication. 2018

This paper provides a software architecture to collect data from robot man-
ufacturing stations. The suggested architecture was designed to be applicable to
existing and new manufacturing stations. The collected data is abstracted into
the form of operations and can be visualized in real-time aiding the operators.
To show the applicability of the data, the software architecture was applied and
tested on manufacturing stations consisting of several robots. Then, process min-
ing methods are used to process the obtained data to construct a general model
that represents the activities of the station. Process mining algorithms are also
used to identify the relationship between the resources in the station.

Paper 3
Ashfaq Farooqui, Petter Falkman, and Martin Fabian.
Towards Automatic Learning of Discrete-Event Models using Queries
and Observations. Submitted for possible journal publication, 2018

This paper presents an approach to integrate active and passive learning by
introducing the L+ algorithm, an extension to the L∗ algorithm. The L∗ algo-
rithm, presented in Paper 5, shows the possibility to learn formal models from
a simulated environment. A major bottleneck to practically use the L∗ on man-
ufacturing stations relates to finding counterexamples. The approach presented
in this paper, specifically the L+ algorithm, uses previously collected sequential
operation data to find counterexamples to a model created by the L∗ algorithm.

22

Chapter 5

Concluding Remarks and Future
Work

Building correct and error free control logic for manufacturing systems is a chal-
lenge. Mathematically well-defined formal methods provide the possibility to
analyze and understand the system. These formal methods can ease the task of
building control logic by focusing on building models that define the behavior
of the system, and analysis can then be performed on these models to verify that
given requirements are guaranteed to be fulfilled. Doing so allows the engineer
to focus on the behavior and not the underlying details of the system. However,
the models grow exponentially as the number of resources and operations per-
formed by them increases, and this makes it hard to manually create models.
Hence, it would be beneficial to be able to automatically build models that can
then be used by engineers to perform analysis by applying formal methods.

This thesis focuses on automatically building models of manufacturing sys-
tems to help during the maintenance stages, as well as during the early virtual
commissioning phase. To help operators doing maintenance, the current state
of the manufacturing system needs to be tracked and visualized in a way under-
standable by the operators. To this end, an architecture to collect and transform
execution data from robots in manufacturing stations is presented in Paper 2.
This data is used to aid operators, by visualizing the execution of the system,
to better understand and service the station in a timely manner. Furthermore,
the logged data is also used to infer a model that describes the behavior of the
system using Process Mining approaches. This model describes the relation-
ship between the different operations in the system, and the general product flow
between the resources.

The possibility to collect data and build a model in real-time creates many
more avenues to support operators. Live data from the manufacturing system
can be replayed and simulated in the model, in doing so any behavior not already
present in the model can be captured and presented to the operator for inspection.

23

CHAPTER 5. CONCLUDING REMARKS AND FUTURE WORK

Similarly, the generated data can be used to continuously update the model, that
is, build the model in real-time. This live model can be verified against the
requirements of the manufacturing system to find deviations. Furthermore, these
models can be used to perform predictive maintenance on the resources, predict
delays, predict the throughput, thereby supporting the engineers and operators.

Another area that this thesis focuses on is learning of formal models from a
digital twin. Engineers can couple the digital twin with active learning during
the development process to analyze the effects of changing requirements. By
defining executable operations – sets of actions – that perform a specific task,
the learner is tasked with inferring a complete model that describes the behavior
of the simulation model. This helps in building flexible manufacturing systems in
which the engineers need not spend additional effort to manually build models
for every product variant. Thus, the learner can infer models for the different
products, using the virtual model, based on their requirements.

In conclusion, this thesis studied problems faced during error handling in the
manufacturing industry. Certain key problems were identified, and the remainder
of the thesis presented tools and techniques to tackle them. The presented ap-
proaches were tested and validated on small systems and toy examples to show a
proof of concept. However, to be able to fully use these benefits in an industrial
setting, the algorithms need to be improved and implemented.

Future work

To be able to fully realize the work presented in this thesis and apply it in
real demonstrations, there are several challenges that need to be handled. The
state-space explosion problem is one of the major challenges faced while try-
ing to learn models automatically. An approach to alleviate this challenge is
to use richer formalism to describe models; one such formalism is Extended
Finite Automata [58], an extension of finite-state machines that is built up of
bounded discrete variables and uses guards and actions to read and update vari-
ables while executing transitions. In order to automatically generate guards for
an Extended Finite Automaton, it might be worth to investigate if Binary Deci-
sion Diagrams [59] can be used to encode state information in the observation
tables. Then, by consolidating the state information in a smart way, to generate
guards for each transition.

Concerning generation of data from the factory floor as presented in Paper 2,
the current work is limited to gathering data from industrial robots. However,
most of the logic in complex systems is contained within the PLC. Therefore,
generation of execution data from PLCs into a reasonable abstraction is the next
natural step.

In a more broader context, a major challenge is to reason about the quality

24

of the obtained models. Models are not perfect; they represent only a part of
the reality. But to be able to reason and make decisions by using such models,
there needs to be some metrics to help classify them. These metrics can provide
the engineer with a degree of confidence when performing analysis on the model,
and also help reason about the meaning of these results in relation to the physical
system.

25

26

Bibliography

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–242,
2014. [Online]. Available: http://dx.doi.org/10.1007/s12599-014-0334-4

[2] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” in 2016 49th Hawaii International Conference on System Sci-
ences (HICSS), Jan 2016, pp. 3928–3937.

[3] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of man-
ufacturing systems,” Journal of Computational Design and Engineering,
vol. 1, 2014.

[4] “Process Simulate.” [Online]. Available: https://www.plm.automation.
siemens.com/global/en/products/tecnomatix/assembly-simulation.html

[5] “Xcelgo Experior.” [Online]. Available: https://xcelgo.com/experior/

[6] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer Science & Business Media, 2009.

[7] P. Loborg, “Error recovery in automation an overview,” in AAAI-94 Spring
Symposium on Detecting and Resolving Errors in Manufacturing Systems,
Stanford, Ca, USA, 1994.

[8] P. Loborg and A. Törne, “Manufacturing control system principles sup-
porting error recovery,” in Proceedings of the AAAI Spring Symposium on
Detecting and Resolving Errors in Manufacturing Systems, Palo Alto, CA,
USA, vol. 2123, 1994.

[9] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-
tolerant techniques ;part i: Fault diagnosis with model-based and signal-
based approaches,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 6, pp. 3757–3767, June 2015.

[10] B. Vogel-Heuser, S. Rösch, J. Fischer, T. Simon, S. Ulewicz, and J. Folmer,
“Fault handling in PLC-based industry 4.0 automated production systems

27

http://dx.doi.org/10.1007/s12599-014-0334-4
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/assembly-simulation.html
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/assembly-simulation.html
https://xcelgo.com/experior/

BIBLIOGRAPHY

as a basis for restart and self-configuration and its evaluation,” Journal of
Software Engineering and Applications, vol. 9, no. 1, p. 1, 2016.

[11] P. Bergagård, M. Fabian, P. S, and K. Bengtsson, “Implementing restart in
a manufacturing system using restart states.”

[12] A. Farooqui, P. Bergagard, P. Falkman, and M. Fabian, “Error handling
within highly automated automotive industry: Current practice and re-
search needs,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 9 2016.

[13] D. Angluin, “Learning regular sets from queries and counterexamples,” In-
formation and Computation, vol. 75, no. 2, pp. 87 – 106, 1987.

[14] W. van der Aalst, Process Mining. Springer Nature, 2016.

[15] T.-C. Chang, Expert process planning for manufacturing. Addison-Wesley
Longman, 1990.

[16] H. Marri, A. Gunasekaran, and R. Grieve, “Computer-aided process plan-
ning: a state of art,” The International Journal of Advanced Manufacturing
Technology, vol. 14, no. 4, pp. 261–268, 1998.

[17] “ABB Robot Studio.” [Online]. Available: https://new.abb.com/products/
robotics/sv/robotstudio

[18] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture,
1st ed. Springer Publishing Company, Incorporated, 2009.

[19] K. Bengtsson, B. Lennartson, and C. Yuan, “The origin of operations: In-
teractions between the product and the manufacturing automation control
system,” IFAC Proceedings Volumes, vol. 42, 2009.

[20] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction to
Automata Theory, Languages and Computability, 2nd ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[21] C. de la Higuera, Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press, 2010.

[22] ——, “A bibliographical study of grammatical inference,” Pattern Recog-
nition, vol. 38, no. 9, 2005.

[23] M. Bugalho and A. L. Oliveira, “Inference of regular languages using state
merging algorithms with search,” Pattern Recogn., vol. 38, no. 9, 2005.

28

https://new.abb.com/products/robotics/sv/robotstudio
https://new.abb.com/products/robotics/sv/robotstudio

BIBLIOGRAPHY

[24] R. Parekh and V. Honavar, “Grammar inference, automata induction, and
language acquisition,” Handbook of natural language processing, pp. 727–
764, 2000.

[25] J. Oncina and P. Garcia, “Inferring regular languages in polynomial update
time,” in Pattern Recognition and Image Analysis, ser. Series in Machine
Perception and Artificial Intelligence, N. P. de la Blanca, A. Sanfeliu, and
E. Vidal, Eds., vol. 1. World Scientific, Singapore, 1992, pp. 49–61.

[26] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learn-
ing Theory. Cambridge, MA, USA: MIT Press, 1994.

[27] M. Bugalho and A. L. Oliveira, “Inference of regular languages using state
merging algorithms with search,” Pattern Recogn., vol. 38, no. 9, Sep.
2005.

[28] E. Gold, “System identification via state characterization,” Automatica,
vol. 8, no. 5, pp. 621 – 636, 1972. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0005109872900337

[29] W. Wieczorek, Grammatical Inference: Algorithms, Routines and Applica-
tions, 1st ed. Springer Publishing Company, Incorporated, 2016.

[30] A. L. Oliveira and S. Edwards, “Limits of exact algorithms for inference
of minimum size finite state machines,” in Proceedings of the 7th Interna-
tional Workshop on Algorithmic Learning Theory, ser. ALT ’96, 1996.

[31] A. L. Oliveira and J. a. P. M. Silva, “Efficient algorithms for the inference
of minimum size DFAs,” Mach. Learn., vol. 44, no. 1-2, pp. 93–119, Jul.
2001.

[32] K. J. Lang, “Faster algorithms for finding minimal consistent DFAs,” Tech.
Rep., 1999.

[33] S. M. Lucas and T. J. Reynolds, “Learning DFA: evolution versus evidence
driven state merging,” in Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, vol. 1, Dec 2003, pp. 351–358.

[34] H. Juillé and J. B. Pollack, “A stochastic search approach to grammar in-
duction,” in Grammatical Inference, 1998.

[35] E. M. Gold, “Language identification in the limit,” Information and
Control, vol. 10, no. 5, pp. 447 – 474, 1967. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0019995867911655

29

http://www.sciencedirect.com/science/article/pii/0005109872900337
http://www.sciencedirect.com/science/article/pii/0005109872900337
http://www.sciencedirect.com/science/article/pii/S0019995867911655

BIBLIOGRAPHY

[36] R. E. Schapire, The Design and Analysis of Efficient Learning Algorithms.
Cambridge, MA, USA: MIT Press, 1992.

[37] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A redundancy-
free approach to active automata learning,” in Runtime Verification,
B. Bonakdarpour and S. A. Smolka, Eds. Springer International Pub-
lishing, 2014, pp. 307–322.

[38] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems. Springer, 2011, pp. 256–296.

[39] B. Jonsson, Learning of Automata Models Extended with Data. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 327–349.

[40] F. Aarts and F. Vaandrager, “Learning I/O automata,” in CONCUR 2010 -
Concurrency Theory, P. Gastin and F. Laroussinie, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 71–85.

[41] M. Isberner, F. Howar, and B. Steffen, “Learning register automata: from
languages to program structures,” Machine Learning, vol. 96, no. 1, pp.
65–98, Jul 2014.

[42] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying au-
tomata learning to embedded control software,” in Formal Methods and
Software Engineering. Springer International Publishing, 2015.

[43] S. Goldman and M. Kearns, “On the complexity of teaching,” J. Comput.
Syst. Sci., vol. 50, 1995.

[44] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp. 223–252,
Sep. 1977. [Online]. Available: http://doi.acm.org/10.1145/356698.356702

[45] M. Yoeli, “The cascade decomposition of sequential machines,” IRE Trans-
actions on Electronic Computers, vol. EC-10, no. 4, pp. 587–592, Dec
1961.

[46] R. Dijkman, J. Hofstetter, and J. Koehler, Business Process Model and No-
tation. Springer, 2011.

[47] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: discov-
ering process models from event logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 9, pp. 1128–1142, Sept 2004.

30

http://doi.acm.org/10.1145/356698.356702

BIBLIOGRAPHY

[48] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process mining
with the heuristics miner-algorithm,” Technische Universiteit Eindhoven,
Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[49] C. W. Günther and W. M. Van Der Aalst, “Fuzzy mining–adaptive process
simplification based on multi-perspective metrics,” in International Con-
ference on Business Process Management. Springer, 2007, pp. 328–343.

[50] W. van der Aalst et al., “Business process mining: An industrial applica-
tion,” Information Systems, vol. 32, no. 5, pp. 713–732, 2007.

[51] W. M. P. van der Aalst, “Business process management: A comprehensive
survey,” ISRN Software Engineering, vol. 2013, pp. 1–37, 2013.

[52] R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst, and
P. J. M. Bakker, Application of Process Mining in Healthcare - A Case
Study in a Dutch Hospital, ser. Biomedical Engineering Systems and Tech-
nologies. Springer Nature, 2008, pp. 425–438.

[53] A. Partington, M. Wynn, S. Suriadi, C. Ouyang, and J. Karnon, “Process
mining for clinical processes,” ACM Transactions on Management Infor-
mation Systems, vol. 5, no. 4, pp. 1–18, 2015.

[54] E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro, “Process min-
ing in healthcare: A literature review,” Journal of Biomedical Informatics,
vol. 61, pp. 224–236, 2016.

[55] H. Yang, M. Park, M. Cho, M. Song, and S. Kim, “A system architecture for
manufacturing process analysis based on big data and process mining tech-
niques,” in 2014 IEEE International Conference on Big Data (Big Data),
10 2014.

[56] P. Viale, C. Frydman, and J. Pinaton, “New methodology for modeling
large scale manufacturing process: Using process mining methods and
experts’ knowledge,” in 2011 9th IEEE/ACS International Conference on
Computer Systems and Applications (AICCSA), 12 2011.

[57] B. N. Yahya, “The development of manufacturing process analysis: Lesson
learned from process mining,” Jurnal Teknik Industri, vol. 16, no. 2, 2014.

[58] R. Malik, M. Fabian, and K. Åkesson, “Modelling large-scale discrete-
event systems using modules, aliases, and extended finite-state automata,”
IFAC Proceedings Volumes, vol. 44, no. 1, pp. 7000 – 7005, 2011, 18th
IFAC World Congress.

31

BIBLIOGRAPHY

[59] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3, pp.
293–318, 1992.

32

Part II

Included Papers

Paper 1

Error Handling Within Highly Automated
Automotive Industry: Current Practice and

Research Needs.

Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin
Fabian.

2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 2016, Berlin,

Germany.

Comment: The paper has been reformatted for readability, but is
otherwise unchanged.

Error Handling Within Highly Automated
Automotive Industry: Current Practice and

Research Needs.
Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin Fabian.

Abstract

Fault tolerant systems, commonly found in literature, are imple-
mented in various computer applications. Some of these methods
have been studied and developed to aid manufacturing systems; how-
ever, they have rarely been integrated into the manufacturing pro-
cess. Broadly, the problem seems to be integration of error handling
procedures towards the end of physically building the manufactur-
ing line, lack of a defined workflow, untested program logic and
inadequately equipped personnel to name a few. To this end, a sur-
vey was conducted within the Swedish automotive industry to get
an understanding of current error handling procedures and its short-
comings, and are presented here. Based on this data, and looking at
the trends within the manufacturing industry, this paper also identi-
fies research topics aimed towards defining methods to create next
generation fault tolerant manufacturing systems.

1 Introduction

Complexity of automotive manufacturing industry is constantly increasing to
keep up with advancement in technology, market trends, legislative require-
ments, and most of all high quality products. To this end, the systems developed
are highly automated with minimal manual handling; they must not only take
into account flexibility, efficiency, and development time, but also account for
fault tolerant behavior.

Development of automated manufacturing systems is a demanding task. One
of the main hurdles is the inability to validate and verify all requirements before
physically commissioning the system; this means the physical system needs to
continuously be upgraded when problems are encountered in the design. As a
consequence, human operators – maintaining these systems – need to be highly
skilled, but cannot be given sufficient training until the physical system is com-
missioned.

37

PAPER 1. ERROR HANDLING WITHIN HIGHLY AUTOMATED AUTOMOTIVE...

Advancement in technology today promises tools and methods that may help
overcome these hurdles and will eventually lead to improved designs and more
robust solutions. Formal methods and virtual commissioning are good exam-
ples of this, that while not previously adapted due to lack of usable tools, are
gaining acceptance within the automotive industry. Using these tools will allow
industries to first verify and virtually validate a design before physically com-
missioning the system. Additionally, it will allow operators to be trained within
the virtual space; thereby increasing efficiency.

According to Loborg [1], a fault is what causes a difference between the
specification of a system and that which is observed, also known as an error. A
failure is said to occur when an error results in a loss of service. Fault tolerant
systems – systems that can handle an error without affecting the service delivered
– have been studied in academia within the area of computer science. A number
of these methods have been developed for manufacturing systems: Loborg [1]
provides a survey of these methods; a case study analysis of eight industries using
fault tolerant techniques is presented by Vogel-Heuser et al. [2]; Gao [3, 4] gives
an elaborate overview on detection and diagnosis within fault tolerant systems.
There is however, a lack of defined workflow that will help design, verify, and
validate a manufacturing system before physical commissioning to ensure fault
tolerance. Error handling on the other hand is the course of action employed,
after occurrence of an error, to mitigate its effects and avoid a failure scenario.
The present paper will use these definitions for the three terms – fault, error, and
failure – while looking at current trends in the industry and providing possible
research topics.

1.1 Contribution

This paper is part of ongoing work aimed towards defining a process to build
fault tolerant manufacturing systems. It presents an overview of current error
handling procedures employed in the industry today and its shortcomings – based
on a survey conducted within the body-in-white segment of the Swedish auto-
motive industry. Based on the problems identified from the survey, this paper
will introduce future research areas that aims at supporting operators during er-
ror scenarios both for virtual and physical systems. The main idea with such
techniques is to define a framework and workflow that will incorporate error
handling into the initial preparation phase of the manufacturing system. Also,
the paper suggests an additional step to the already existing process to ensure
safety of the manufacturing line.

38

2. BACKGROUND

1.2 Outline
The paper is divided as follows: Section 2 provides an overview of current indus-
trial setup and processes for error handling. This is followed by a brief outline of
the survey results in Section 3. Section 4 provides some insights into future di-
rection of the manufacturing industry which influence the proposed framework.
Finally, Section 5 suggests possible research topics aimed towards creating fault
tolerant systems.

2 Background
Within the body-in-white segment, a manufacturing line generally consists of a
number of manufacturing stations – each responsible for a specific task, such
as spot welding, stud welding, gluing etc. These tasks are generally performed
by resources including, a certain number of robots needed for the actual pro-
cess; further assisted by conveyors or Automatic Guided vehicles (AGV) for
material handling. Tools, tool changers, and other task specific actuators are
also present. The complete station in a broad perspective normally consists of a
number of sub-stations: manual or automated feeding sub-stations; process sub-
station, where the actual process takes place; a checking sub-station to ensure
quality; and an unloading sub-station that feeds the product into the next station.

A manufacturing station can broadly be divided into: physical system con-
sisting of resources and the product parts; and control system that defines the
behavior of the station. This control system consists of a number of operations
that must be executed in a defined manner by the physical system. For the control
system to effectively control the physical system it is important that their states
are always synchronized, here the state refers to a set of variables that capture
the properties of a system or subsystem in a unique way.

2.1 Error handling process
Inspired by [1], [5] divides the process of error handling into the following
phases:

• Detection: Where the actual state of a system is monitored and compared
with its specifications in order to determine any discrepancies during exe-
cution.

• Diagnosis: Once an error has been detected, using available information
to determine the fault that caused the specific error.

• Correction: Here the fault which caused an error is corrected, either by
replacing or fixing the faulty part, usually by intervention of an operator.

39

PAPER 1. ERROR HANDLING WITHIN HIGHLY AUTOMATED AUTOMOTIVE...

• Restart: In order to continue execution safely and efficiently after the cor-
rection phase, the control system and physical system are resynchronized
i.e making state of the controller and physical machinery to correspond,
resulting in process restart.

During the restart phase, the state of the physical system is changed to a
legal one by the operator. The challenge is then, to modify the controller state to
correspond to the new physical state [6] so as to allow safe and efficient restart.

Though there have been a plethora of approaches towards fault tolerant sys-
tems within academia, there is no clarity on how many have been tested and
implemented within the industry. The reason being lack of tools, processes and
more often than not a disconnect between industry and academia.

3 Survey summary

A survey was conducted involving Volvo Cars, Volvo Group Trucks, Scania,
National Electric Vehicle Sweden, and GKN Aerospace. The main intention was
to identify and understand common errors faced in these industries, how they are
dealt with, and measures taken to ensure fault tolerance.

3.1 Error scenarios

A set of commonly occurring errors that were identified are discussed below:

• Tool breakage is generally one of the most common fault that result in an
error leading to loss of service; in extreme cases it might result in scrapping
of the part. Detection and diagnosis in this case is rather quick, correction
is fault dependent in most scenarios. The restart phase is handled in various
ways depending on the task performed by the station. In some cases where
cycle time is a few seconds (0-5s), re-running the complete cycle has no
effect; in other cases when the process takes more than few minutes (15-45
min) re-running the complete process is redundant and might induce lags
in the manufacturing line.

• Missing parts or buffer shortage are rarely an issue in the surveyed manu-
facturing stations as they are manually fed. In any case, if there is a missing
part, production is paused and will be resumed when there is availability of
the said part. Though there is no need for error handling procedure, it of-
ten results in a delay for the manufacturing line. Such delays tend to cause
unsynchronized behavior in the subsequent stations possibly resulting in
an unintended sequence of operations.

40

3. SURVEY SUMMARY

• Resource malfunction, i.e when any one of the resources in the station
breaks down; this can result in a complete halt of the station or a tem-
porary break. If the resource is replaceable it is replaced and production
continues. On the other hand, if the resource cannot be replaced, for ex-
ample a robot, then production is delayed until it has been repaired. The
restart procedure in this case remains similar to that of tool breakage; the
specifics are left to the operators discretion.

• Software bugs are not so uncommon in a manufacturing station and take
up considerable amount of time to diagnose and implement permanent so-
lutions. Since changes need to be made directly to the system, each bug fix
may, as a side effect, inject new bugs. Apart from this, detection and diag-
nosis of software bugs requires highly trained and experienced personnel.

• Power outage is not a very common problem in industry today, there are
backup systems to keep the production going. However, there are instances
of power outage, e.g due to lightning. The problem lies not in the loss of
power but rather its effect, as the manufacturing stations in the line could
be unsynchronized with its respective control system; this can complicate
the recovery process. In re-starting the line, there lies a major risk of
damage to the various stations or a product part. The operator is then
responsible to ensure the different systems are in the correct and safe state
in-order to restart. This process is cumbersome, manually exhaustive and
results in loss of production time.

• Preemptive emergency stops, as the name suggests, halts the manufactur-
ing station in order to prevent the occurrence of an error. This is usually
done on recognition of a fault by the operator as a safety measure. The
effects are similar to that of power outage, and the operator is faced with
the same challenges to ensure the safety of the complete line. Apart from
this, there is no data from the manufacturing line to help further diagnose
and study the fault.

• Unintended sequence of operations was not reported as a commonly oc-
curring problem in the survey, mainly because most manufacturing sta-
tions have a fixed sequence of operations predefined in the control system.
Hence, the manufacturing station can perform a single process. By allow-
ing the control system to dynamically create the sequence of operations the
station will then allow processing a range of product parts. In the future,
with highly automated systems in which dynamic sequences are the norm,
the control system must be verified to avoid occurrence of unintended se-
quences.

41

PAPER 1. ERROR HANDLING WITHIN HIGHLY AUTOMATED AUTOMOTIVE...

All the above errors implicitly require the operators to be highly skilled to
handle any error scenario. This further opens up possibilities for human error
due to miscommunication, lack of training and documentation, or misjudgment
of the situation.

3.2 Measures to avoid error handing scenarios

Given the process of handling errors, having skilled operators is key to high pro-
ductivity and low downtime. Apart from the training every operator is provided,
line builders provide instruction manual or remote/on-site assistance to help sup-
port operators. In cases where there are multiple operators working within a
single station, an internal operator manual and a logbook are maintained to sup-
port knowledge transfer and allow for better judgment.

During the preparation phase, before physical commissioning of the man-
ufacturing station, simulations are run to make sure no geometric reachability
issues arise. Apart from that, no other simulations are run to verify any other
aspects of the system. Physical subsystems are generally validated along with
function blocks at the line-builders site; the next stage of testing, today, is only
when the station is setup. After which the logic and station are iteratively mod-
ified and validated. In this procedure, error scenarios are considered at a late
stage of commissioning, generally after the physical station is commissioned.
This leaves very little room for modifications and to incorporate error handling.

4 Future trends within manufacturing

Proposing effective ideas as solutions to the scenarios discussed in Section 3
must also take into account technological heading of the industry. This section
introduces research questions, pursued by both academia and industry, that either
require additional consideration to make them fault tolerant or will provide a
framework to help realize the solutions.

Industry 4.0 [7], also called as the fourth industrial revolution, can be seen
as a collection of various technologies – Internet of Everything(IoE), Cyber-
physical Systems (CPS), and smart factories – to create the next generation of
industrial systems [8]. Enabled by interaction between products, machines, and
people, future industrial systems will be able to make smart decisions. From the
design principles of Industry 4.0 provided by Hermann et al [8], distributed mod-
ular systems are key to build these next generation factories. Various projects di-
rected towards the future of industrial systems have been initiated in many coun-
tries; Factories of the Future [9] is one such long term project running within the
EU.

42

5. RESEARCH NEEDS

Automated robot systems are finding space within ship construction [10] and
within aircraft construction [11]; the unique feature here is that the product stays
in one place, while the robots move around depending on task and requirement to
perform their respective operations. These types of systems increase complexity
to keep the physical and control system synchronized, hence a robust control
strategy and decision making algorithms are needed. Furthermore, verification
of restart methods for multi-robot distributed systems needs to be well defined.

Apart from distributed systems, flexible or reconfigurable system design is
another key factor in the Industry 4.0 vision. These systems will allow for
dynamically changing configuration based on product requirement. One such
project is Factory in a day [12] where a new manufacturing line can be setup in
a short time. Or, it can be used to temporarily extend an existing manufacturing
line to cater to market needs. While the project is aimed at Small and Medium
scale Enterprises (SMEs), it has created interest within a larger community. In
the light of fault tolerance, the reconfigured systems must be compatible with the
existing error handling work-flows, and must also be verified for fault tolerance
before changing the physical system.

Manufacturing lines produce large amounts of raw low-level data during each
operation cycle. This data is then refined to provide meaningful information re-
garding the manufacturing line, which can further facilitate real-time decision
making. To this end, Theorin et al. [13] provide a Line Information System Ar-
chitecture (LISA) – an event-based service-oriented architecture which is both
flexible and scalable. Manufacturing lines capable of utilizing this can provide
much needed help in building future fault tolerant systems and improved error
handling procedures.

Integrated Virtual Preparation and Commissioning (IVPC), introduced in [14],
provides a framework to iteratively design and develop a manufacturing system
within a virtual environment. In this method, the control system is implemented
employing formal tools and validated, both against visual inspection and com-
putations by formal methods, using a virtual model before actual commissioning
of the station. Apart from providing an agile process to construct the control sys-
tem, such a framework also allows for hardware-in-the-loop testing and virtual
training for operator personnel.

5 Research needs
In Section 3 various error scenarios that effect the manufacturing station were
presented. After an error-causing fault has been corrected, the physical and con-
trol system are unsynchronized; synchronizing the two is part of the restart phase
referred to as resynchronization. Unlike Loborg [6] who suggests changing the
internal controller state to correspond to that of the physical system, Bergagård et

43

PAPER 1. ERROR HANDLING WITHIN HIGHLY AUTOMATED AUTOMOTIVE...

al. [5] suggest that the control system is changed to a state from where it is correct
to restart the system, and that the state of the physical system is changed accord-
ingly. This method has been validated in a windscreen mounting station [15]
with positive results. This solution holds for error scenarios like tool breakage,
machine malfunction etc, but does not address safety of the complete manufac-
turing line on restart after a power outage or an emergency stop. Hence, an
additional phase after the restart phase is suggested for further study, henceforth
called assurance phase.

The assurance phase is made possible by using raw low-level data collected
during the operation cycle, similar to the LISA project discussed earlier in Sec-
tion 4. Using the current and last known sensor values to determine the state
of the system and comparing this with the intended state, safety measures can
be computed. Then, the control system will guide an operator to re-start the
manufacturing line safely.

Another issue touched upon in Section 3 is the use of a logbook by operator
personnel. In many cases this book is not well updated or could be misinter-
preted leading to misjudgment and unwanted decisions. Maintaining logs of raw
sensor data, a digital logbook in this case can come of use, instead of using man-
ually maintained logbooks. The functionality of such a digital logbook can be
extended to: help diagnose errors; facilitate training of operator personnel using
the virtual environment to recreate various scenarios; and use in restart situations
for safety assurance as already discussed.

To be able to achieve both, assurance phase and digital logbook, function-
alities a common format for the logged data needs to be defined. Algorithms to
efficiently, process, analyze, visualize, and store such large amounts of data need
to be created. Additionally, the defined format must support interoperability be-
tween the physical system and its virtual counterpart.

Another area of study within error handling is distributed systems. With
distributed systems decision making is decentralized, for example in ship and
aircraft construction robots discussed in Section 4. As there is no centralized
controller keeping track of individual subsystems, there is a need for formal tools
and processes that will enable modeling and verification of such decentralized
systems, specifically to ensure fault tolerance. Once a technique to model and
verify decentralized systems is in place, the actual restart of such manufacturing
system is of interest. A study of well defined workflow and efficient algorithms
that can guide the operator to safely restart one or more resources will provide
much needed foundation.

44

6. CONCLUSION

6 Conclusion
In conclusion, a survey conducted within Swedish automotive industry exhibited
the need for a framework and work-flow to handle the following problems:

• Restart after power outage and emergency stops.

• Software bugs after commissioning.

• Training and support to personnel.

• Knowledge transfer and maintenance.

Based on future trends within the industry, this paper presented a need for further
study on:

• An additional assurance phase after resynchronization.

• Use of logged data– digital logbook – from the manufacturing line to per-
form assurance; maintain knowledge; and, train personnel using the vir-
tual world.

• Data format and algorithms to realize an assurance phase and a digital
logbook leading to a fault tolerant system.

• Modeling and verification of restart within distributed and decentralized
systems using formal methods.

• Validating restart of one or more distributed and decentralized system re-
source during active process.

7 Bibliography
[1] P. Loborg, “Error recovery in automation an overview,” in AAAI-94 Spring

Symposium on Detecting and Resolving Errors in Manufacturing Systems,
Stanford, Ca, USA, 1994.

[2] B. Vogel-Heuser, S. Rösch, J. Fischer, T. Simon, S. Ulewicz, and J. Folmer,
“Fault handling in PLC-based industry 4.0 automated production systems
as a basis for restart and self-configuration and its evaluation,” Journal of
Software Engineering and Applications, vol. 9, no. 1, p. 1, 2016.

[3] Z. Gao, S. X. Ding, and C. Cecati, “A survey of fault diagnosis and
fault-tolerant techniques;part ii: Fault diagnosis with knowledge-based and
hybrid/active approaches,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 6, pp. 3768–3774, June 2015.

45

PAPER 1. ERROR HANDLING WITHIN HIGHLY AUTOMATED AUTOMOTIVE...

[4] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-
tolerant techniques ;part i: Fault diagnosis with model-based and signal-
based approaches,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 6, pp. 3757–3767, June 2015.

[5] P. Bergagård and M. Fabian, “Calculating restart states for systems modeled
by operations using supervisory control theory,” Machines, vol. 1, no. 3, pp.
116–141, 2013.

[6] P. Loborg and A. Törne, “Manufacturing control system principles sup-
porting error recovery,” in Proceedings of the AAAI Spring Symposium on
Detecting and Resolving Errors in Manufacturing Systems, Palo Alto, CA,
USA, vol. 2123, 1994.

[7] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–242,
2014. [Online]. Available: http://dx.doi.org/10.1007/s12599-014-0334-4

[8] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” in 2016 49th Hawaii International Conference on System Sci-
ences (HICSS), Jan 2016, pp. 3928–3937.

[9] “Factories of the future.” [Online]. Available: http://www.effra.eu/

[10] “Carlos.” [Online]. Available: www.carlosproject.eu

[11] “Cablebot.” [Online]. Available: www.cablebot.eu

[12] “Factory-in-a-day.” [Online]. Available: www.factory-in-a-day.eu/

[13] A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lundholm,
and B. Lennartson, “An event-driven manufacturing information system ar-
chitecture,” in IFAC/IEEE Symposium on Information Control Problems in
Manufacturing, INCOM, 2015, pp. 547–554.

[14] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falkman, “Inte-
grated virtual preparation and commissioning: supporting formal methods
during automation systems development,” 2016.

[15] P. Bergagård, P. Falkman, and M. Fabian, “Modeling and automatic cal-
culation of restart states for an industrial windscreen mounting station,”
IFAC-PapersOnLine, vol. 48, no. 3, pp. 1030–1036, 2015.

46

http://dx.doi.org/10.1007/s12599-014-0334-4
http://www.effra.eu/
www.carlosproject.eu
www.cablebot.eu
www.factory-in-a-day.eu/

Paper 2

From Factory Floor to Process Models: A Data
Gathering Approach to Generate, Transform, and

Visualize Manufacturing Processes.

Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and
Martin Fabian.

Submitted for possible journal publication. 2018

Comment: The paper has been reformatted for readability, but is
otherwise unchanged.

From Factory Floor to Process Models: A Data
Gathering Approach to Generate, Transform, and

Visualize Manufacturing Processes.
Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian.

Abstract

Obtaining data from automotive manufacturing stations will help
operators and engineers better understand the stations as thereby im-
proving its performance. The data needs to be extracted from tow
sources, the PLC’s and the robots. In practice, methods to extract
usable data from robots are rather scarce. In this work, we pro-
vide an approach to capture data from robots, which can be applied
to both legacy and current state-of-the-art manufacturing systems.
The described approach is developed in Sequence Planner – a tool
for modeling and analyzing production systems – and is currently
implemented at an automotive company as a pilot project to visual-
ize and examine the ongoing process. By exploiting the robot code
structure, robot actions are converted to event streams that are trans-
formed into an abstraction called operations. We then demonstrate
the applicability of the resulting data, abstracted as operations, by
visualizing the ongoing process in real-time as Gantt charts, that
support operators performing maintenance. And, the data is also an-
alyzed off-line using process mining techniques to create a general
model that describes the underlying behaviour of the manufacturing
station. Such models are used to then derive insights about the rela-
tionship between different operations, and also between resources.

1 Introduction
The complexity of the automotive manufacturing constantly increases to keep up
with advancements in technology, market trends, legislative requirements, and
most of all high quality products. While new techniques and processes are being
researched under the umbrella of Industry 4.0 [1], it is not easy to implement
these techniques on existing systems. The increase in complexity can be due
to increased interaction between different sub-systems, added functionality to
handle variants by the station, addition of logic to ensure safety, and optimization

49

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

techniques employed to improve factors such as process time, energy, quality,
etc.

Additionally, once a manufacturing line is commissioned it is expected to last
for several years to even out investment and start generating returns. More often
than not, the obstacle of higher costs hinders the adoption of newer technologies.
Hence, the gap between existing technologies on the factory floor and available
technologies rarely diminishes. The requirement, to keep existing and newer
systems compatible, adds to the complexity of manufacturing systems.

An overall system view that helps operators and engineers better understand
the system and its dependencies, is rare. This makes it more difficult to debug
problems and improve performance in a reliable and verifiable manner.

Model-based techniques, that offer design, validation, verification, and test-
ing, are being actively adopted within the manufacturing industry [2, 3] to for-
mally ensure correctness of complex systems. The last few years have seen a
drastic advancement in model-based algorithms within, both, the more theoreti-
cal formal methods and application oriented computer science domains, that are
practical to use on regular manufacturing systems. These techniques are usually
coupled with virtual technologies such as simulations [4] and virtual reality [5]
in the early phase of manufacturing or the virtual commissioning phase [6],
thereby leading to shorter physical commissioning effort. However, creating for-
mal models is a challenging task that requires skill, in-depth knowledge of the
system, and creativity. Incorrect or incomplete models are misleading and can
unnecessarily complicate the process. A possible way to ameliorate this issue
would be to create and adjust models based on the data obtained from the factory
floor.

One major challenge within the automotive manufacturing industry has been
to, conveniently, access and extract useful data from the factory floor. Access
to this data might provide a key step towards automatically building models. A
possible way to extract this data would be using commonly used protocols such
as OPC-UA [7] or Snap 7 [8]. However, the data collected using these protocols,
provides access to the PLC and not to any robot data. And there lacks an efficient
way to extract data from robots operating in the station. One major reason for
this is the restrictions to access data imposed by robot vendors.

Today, based on predefined requirements, robots are programmed to send
data to the PLC. This data usually includes alarms, warnings, and measurements
made during execution. The PLC further aggregates the data and saves it in a
central database. Data stored in the database is then used off-line at distinct time
instances to calculate cycle times. To enable this, each robot requires additional
code, in the robot itself and in the PLC, that has to be manually added and main-
tained. Therefore, it is currently difficult to track real-time operation of robots.
This tracking, usually in the form of visualizations, help operators and engineers

50

1. INTRODUCTION

tune and improve performance of the system, and also enable data-driven ap-
proaches for preemptive maintenance.

To this end, a method to capture robot data from existing and new manufac-
turing systems will prove beneficial.

1.1 Contribution

Error handling within the Swedish automotive industry was investigated in [9].
One major outcome of that study was the need to have data and tools on the
factory floor to be able to: visualize the ongoing process; visualize the current
state of the system, which in case of errors, will help with restarting the system;
replay recorded data in a virtual model in order to aid training of operators at
the station. In this work, we address the identified need and create tools and
processes that will help mitigate problems discussed in [9].

The contribution of this paper can be classified into two parts. The first
part deals with generation of data from the robot station. In the second part
we demonstrate the applicability of the collected data by automatically creating
models and visualizations.

The first contribution of this paper results in toolset that provides access to
system level data so as to enable operators, engineers, and upper level manage-
ment to make technical data driven decisions. In order to do this, this paper
provides a data processing pipeline that starts with a generic and non-intrusive
approach to capture low level data from an existing robot station, followed by,
transforming this data into a higher abstraction as operations.

The second contribution deals with the use of this data for model generation.
Here, the captured data is used for online visualization of robot operations. In
addition, the data collected is also used off-line to understand the behaviour by
creating and visualizing models on a relevant abstraction level that illustrate the
overall execution, achieved using process mining tool ProM [10].

This article will provide an insight into the tool Sequence Planner [11] used
to create the framework that captures and processes the data from a demo station
at an automotive company. However, for practical details regarding application
setup and configuration interested readers are referred to [12].

1.2 Outline

The article is structured as follows: Section 2 highlights and motivates the gen-
eral architecture that has been developed to gather and process data in a dis-
tributed and non-intrusive manner. A more detailed explanation of the software
and data transformations along with real-time visualizations of the gathered data
is presented in Section 3. Section 4 describes how the collected data is used

51

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

off-line to understand the behaviour of the manufacturing station by creating and
visualizing models that illustrate the overall execution. Finally, Section 5 con-
cludes by shortly mentioning the future steps resulting from this work.

2 Software Architecture
Within the manufacturing community different production paradigms exist, like
Reconfigurable, Flexible, Adaptive, Multi-agent, Holonic, manufacturing sys-
tems, to name a few [13]. At the core of these systems lies the idea that each
subsystem performs one specific function. Similarly, in the computer science
community the last few years have seen the development of Service Oriented
Architectures (SOA), where each service performs one specific task. This par-
allelism in the two communities allows for easy integration of ideas between
them.

Theorin et. al. [14] provide a broader discussion on various architectures, and
introduce the Line Information System Architecture (LISA) that uses an Event-
driven Service Architecture (EDA). Ideas from LISA are used to build a stream-
ing data pipeline, which is basically a series of steps that transform real-time
data between different formats and abstraction levels. In Figure 1, an overview
of a pipeline is shown including the event stream generation, transformation and
higher level services.

Services

Transformations

Message Bus
Virtual

Device

Endpoint

Categorizing

events

Aggregating

events

Visualization Optimization Relation

aggregation

Event stream

Generation

User-defined

services

Figure 1: Overview of a general computational pipeline, along with their sub-
functions.

2.1 Pipeline components
A data pipeline broadly consists of two types of components, namely a message
bus, responsible for communication and endpoints, data processing modules that

52

2. SOFTWARE ARCHITECTURE

process messages, connected to the message bus. Figure 1 shows how data is
passed through a pipeline in the order to obtain desired results.

1. Virtual Device (VD) Endpoints: VD endpoints provide an entry point to
generate event streams from the physical hardware such as robots, PLCs,
scanners etc., onto the message bus. Implementing communication pro-
tocols within each low level systems in order to communicate with the
message bus is a hard task, and not always feasible. Instead, the VD is a
wrapper that provides a message-based interface; it thereby simplifies the
architecture and allows plug-and-play design for hardware components,
providing seamless integration for new devices.

The output from a VD endpoint is a stream of simple, low level messages
that can be interpreted and used by all other endpoints.

2. Transformation Endpoints: Low level systems communicate with simple
messages which are sent by the VD onto the bus. Transformation end-
points convert such low level data, and generally data on a low abstraction
level, into higher abstractions, thereby making the data more usable for
other endpoints in the pipeline. There are three main types of transfor-
mations, fill and map both of which add additional information to the
event streams, and fold which produces new events based on aggregat-
ing a number of previously received events. The fill transformation ap-
pends additional information to the events, while the map transformation
uses current state information while appending to an event.

3. Service Endpoints: Service Endpoints provide a service – one specific
function – with the incoming data as input and may or may not send pro-
cessed data on the bus. That is to say, services consume data from one or
more transformations, and then use this data to compute a result. Since
services are based on user needs, the pipeline allows integration of new
services without hampering the existing process. Examples of services
may include, aggregation services, prediction services, and visualization
services.

2.2 Message bus
The message bus forms the communication layer allowing interaction between
all endpoints. There exist, in literature and in practice, a number of possible con-
figurations to create a message bus. While configuring a bus, the main objective
is to aim for low complexity and high scalability. Ideally, it must be possible to
change or upgrade the message bus without major changes to the code.

Services, in the pipeline, are triggered to execute when a message arrives for
it. To make this possible, messages on the bus are structured into topics, and each

53

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

service subscribes to one or more topics. When a message arrives on a specific
topic subscribed by a service, that particular service is executed once.

To keep the implementation simple, the Apache ActiveMQ [15] message bus
was chosen in the use case presented in the next section. The bus was tested with
a total of about 20 interacting resources and several services running online; no
issues related to performance were noticed. However, if higher throughput and
a distributed nature is required, Apache Kafka [16] or any other compatible bus
can be used with minimal changes to the existing system.

3 Robot event pipeline

The approach presented in this paper has been implemented at a body-in-white
production station at an automotive company. The station performs spot welding
using four robots on a variety of different car models produced by the company.
Once the car body enters the station and is in position, the robots choose the
appropriate predefined program depending on the car model, and then moving
in the workspace between pre-programmed spatial positions where they perform
operations such as welding. During these movements they might need to wait
for each other when entering common shared zones. Apart from this, tip dress-
ing operations – the process of cleaning the welding tip – are also performed
regularly by the robots to maintain weld quality.

ABB robots are used in this station which are programmed using a high-level
programming language – RAPID – developed by ABB for their industrial robots.
This language supports modular programming, that is, these programs are di-
vided into, smaller, self-contained, modules that contain a set of instructions
corresponding to some physical division in the system. Each module is further
divided into routines which correspond to a unit task performed by the robot.
Each line in the program corresponds to an action by the robot, which is per-
formed sequentially. That is, there are entry and exit points defined for the robot
program. The line being executed is referred to by the program pointer. Apart
from robot movements, the program also interfaces with the signals which pro-
vide input/output functionality. This code structure will prove beneficial when
transforming the generated data into operations as explained later in this section.

The implementation is done using Sequence Planner (SP) [11], a tool devel-
oped at Chalmers University for modeling and analyzing automation systems. SP
is developed as a micro-service architecture, where live data can be connected
to distributed event pipelines, using a Virtual Device (VD) endpoint, and trans-
formed into usable information for visualization as well as various algorithms.
In this use case, an ABB endpoint, transformation pipelines, visualization, and
data analysis was implemented in SP.

54

3. ROBOT EVENT PIPELINE

3.1 ABB endpoint

To feed live data from an ABB robot into SP, a ABB VD was developed to in-
terface with ABB robots; which is achieved using the Robot SDK [17] provided
by the robot manufacturer. This SDK provides a mechanism to subscribe to both
the program pointer and the Input/Output signals present in the robot controller.

The VD endpoint uses the SDK to receive notifications on the event of a
change in the program pointer or the signals; which is followed by sending a
message – after appending a header – on the message bus with the appropriate
contents. An example robot message for a program pointer position, transmitted
when the program pointer advances in an execution step, is shown in Listing 2.1.

The message consists of a program pointer position, an address, and a header.
The programPointerPosition block contains information regarding the position
of the program pointer. It contains the names of the module and routine
currently executed by the robot. Additional information pointing to the exact
line number is available under range. The value of time contained here is the
timestamp when this event was created. The address block contains the path,
internal to the robot, that generated the event.

The header block (the bottom three lines) contains information that helps
identify the source of each message. It consists of a robotId that identifies the
robot responsible for generating the event; a timestamp for when the endpoint
received the pointer change information is sent as time; and a workCellId,
a unique number to represent the manufacturing station where the message was
generated.

Listing 2.1: ProgramPointerPosition message sent when the pointer position ad-
vances one step

{
" p r o g r a m P o i n t e r P o s i t i o n " : {

" p o s i t i o n " : {
" module " : " LD930R8119 " ,
" r o u t i n e " : " D931SchDefau l t " ,
" r a n g e " : {

" b e g i n " : {
" column " : 5 ,
" row " : 250

} ,
" end " : {

" column " : 28 ,
" row " : 250

}
}

} ,
" t ime " : "2017−01−12T17 : 0 3 : 5 4 . 9 4 2 + 0 1 : 0 0 " ,
" t a s k " : "T_ROB1"

} ,
" a d d r e s s " : {

" k ind " : " p r o g r a m P o i n t e r " ,
" p a t h " : [

"T_ROB1"
] ,

55

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

" domain " : " r a p i d "
} ,
" r o b o t I d " : " r8255 " ,
" t ime " : "2017−01−12T17 : 0 3 : 5 4 . 9 4 2 + 0 1 : 0 0 " ,
" w o r k C e l l I d " : "1741010"

}

Instead of a programPointerPosition message the robot can generate a newSig-
nalState event when an IO value changes, as shown in Listing 2.2. In this
case, the signal message, similar to a program pointer position message, con-
sists of a newSignalState and the header. The newSignalState block has the
value of the signal, a flag defining if the signal is simulated and the quality. The
address block, similar to the address block in programPointerPosition, pro-
vides the source of the signal. The header appended is the same as explained in
Listing 2.1

Listing 2.2: An example newSignalState message sent on an update in signal
value
{

" n e w S i g n a l S t a t e " : {
" v a l u e " : 0 . 0 ,
" s i m u l a t e d " : f a l s e ,
" q u a l i t y " : {

" v a l u e _ _ " : 1
}

} ,
" a d d r e s s " : {

" s i g n a l " : " O_Homepos " ,
" domain " : " i o "

} ,
" r o b o t I d " : " r8119 " ,
" t ime " : "2017−01−13T12 : 3 4 : 3 2 . 9 0 4 + 0 1 : 0 0 " ,
" w o r k C e l l I d " : "1741010"

}

3.2 Transformation endpoints

As mentioned earlier, transformation endpoints transform data from one abstrac-
tion to another. The incoming raw data from a robot as seen in Listing 2.1 needs
to be refined into something more understandable. One sufficiently good ab-
straction to use is that of an operation [18]. The robot program structure, defined
previously, is suitable to easily transform the raw data into operations. We create
two types of operations from the raw data named routines and wait. Routines
in the robot program represent the tasks performed by the robot, these constitute
“move from a to b”, “grip”, “tip-dress” or “weld”, and hence they are abstracted
as operations, a concept easily grasped by humans. Wait operations are relate
to the time when the robot is waiting to get access to a shared resource, which
is accomplished using the keyword “WaitSignal” in the robot programs. Using
this information, the following subsections provide a step by step approach to

56

3. ROBOT EVENT PIPELINE

transforming the raw data into operations.

Naming and Categorizing events

The first step in the transformation is to be able to differentiate between the
incoming events. This is done by naming the incoming events according to the
routine they were generated from. Furthermore, an event due to a wait must
be differentiated from other tasks. For every robot message that arrives, text
corresponding to the range specified by the program pointer is extracted from
the robot program; this text is the instruction the robot currently performs. If the
extracted instruction reads “WaitSignal” then the event is categorized as a “wait”
event, else it belongs to a “routine”. A new message is then sent out appending
the original message with tags “instruction”, containing the instruction extracted
from the program, and “isWaiting” with a value true if the event is categorized
as a “wait” else a value false. The resulting message from this step is seen in
Listing 2.3

Listing 2.3: A parsed message with additional “instruction” and “isWaiting” keys
{

" p r o g r a m P o i n t e r P o s i t i o n " : {
" p o s i t i o n " : {

" module " : " LD930R8119 " ,
" r o u t i n e " : " D931SchDefau l t " ,
" r a n g e " : {

" b e g i n " : {
" column " : 5 ,
" row " : 250

} ,
" end " : {

" column " : 28 ,
" row " : 250

}
}

} ,
" t ime " : "2017−01−12T17 : 0 3 : 5 4 . 9 4 2 + 0 1 : 0 0 " ,
" t a s k " : "T_ROB1"

} ,
" a d d r e s s " : {

" k ind " : " p r o g r a m P o i n t e r " ,
" p a t h " : [

"T_ROB1"
] ,
" domain " : " r a p i d "

} ,
" i n s t r u c t i o n " : " W a i t S i g n a l R e l e a s e S t a t i o n " ,
" i s W a i t i n g " : " True " ,
" r o b o t I d " : " r8255 " ,
" t ime " : "2017−01−12T17 : 0 3 : 5 4 . 9 4 2 + 0 1 : 0 0 " ,
" w o r k C e l l I d " : "1741010"

}

Listing 2.4: Three different operation events
{

" a c t i v i t y I d " : "80 b1a21e−4535−4797−ad65−d0ec47e2fc99 " ,

57

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

" i s S t a r t " : t r u e ,
" name " : " W a i t S i g n a l R e l e a s e S t a t i o n 2 ; " ,
" r o b o t I d " : " r8255 " ,
" t ime " : "2017−01−13T12 : 3 7 : 0 1 . 9 0 7 + 0 1 : 0 0 " ,
" t y p e " : " w a i t " ,
" w o r k C e l l I d " : "1741010"

} ,
{

" a c t i v i t y I d " : "80 b1a21e−4535−4797−ad65−d0ec47e2fc99 " ,
" i s S t a r t " : f a l s e ,
" name " : " W a i t S i g n a l R e l e a s e S t a t i o n 2 ; " ,
" r o b o t I d " : " r8255 " ,
" t ime " : "2017−01−13T12 : 3 7 : 0 2 . 3 1 1 + 0 1 : 0 0 " ,
" t y p e " : " w a i t " ,
" w o r k C e l l I d " : "1741010"

} ,
{

" a c t i v i t y I d " : "048266 f1−a071−4f1e−b77e−0e5de57a8c23 " ,
" i s S t a r t " : t r u e ,
" name " : " B940ToPutFix t071_3 " ,
" r o b o t I d " : " r8255 " ,
" t ime " : "2017−01−13T12 : 3 6 : 3 4 . 9 5 1 + 0 1 : 0 0 " ,
" t y p e " : " r o u t i n e s " ,
" w o r k C e l l I d " : "1741010"

}

Aggregating events to operations

The named and categorized messages need to be further processed. The next
step in the pipeline is to aggregate the different messages into operations. This is
done by an endpoint that listens to named and categorized events generated in the
way described in the section 3.2. The endpoint also keeps track of all available
resources and the routines being currently executed by each of them. The output
from this endpoint generates operation events – i.e. the start and stop events for
operations. An operation event has a name, a timestamp, a resource where it is
executed, and a flag that defines if this is a start or stop event. Listing 2.4 shows
three different operation events, two events for a wait operation and a start event
for a routine, running on two different robots. The start and stop operation events
are also shown with their respective timestamps. Furthermore, operation events
can be aggregated to view a complete operation as seen in listing 2.5. However,
there is an advantage to preserve operation events instead of merging them into
operations, since start-stop events can be processed to understand underlying
relations between operations. Hence, both these types of messages are available
on the bus. As shall be seen further on in the paper, operation events are used
during real-time processing of data, mainly for visualization, and aggregated
operation events are used for off-line analysis.

Listing 2.5: An aggregated operation
{

" a c t i v i t y I d " : "80 b1a21e−4535−4797−ad65−d0ec47e2fc99 " ,
" name " : " W a i t S i g n a l R e l e a s e S t a t i o n 2 ; " ,

58

3. ROBOT EVENT PIPELINE

" r o b o t I d " : " r8255 " ,
" s t a r t T i m e " : "2017−01−13T12 : 3 7 : 0 1 . 9 0 7 + 0 1 : 0 0 " ,
" s topTime " : "2017−01−13T12 : 3 7 : 0 2 . 3 1 1 + 0 1 : 0 0 " ,
" t y p e " : " w a i t " ,
" w o r k C e l l I d " : "1741010"

}

Identifying cycles

At this point we have access to a list of sequential operations following the pat-
tern shown in Listing 2.5. This list contains all operations that were executed
over a given period of time. These operations mimic the execution in the physi-
cal station which is cyclic. A set of operations together form a cycle. Automatic
identification of cycles in real-time is a challenge.

In this particular example station a cycle ends when all four robots are at the
home position. Hence, we monitor all robots for a signalState message contain-
ing the O_homepos variable, seen in Listing 2.2, to establish when all resources
are at home. An additional check, to avoid noise, is done to see if all robots
are executing an operation called main at this time. Therefore, when all for
robots execute operation main and the signalState message identifies them to be
in their home position, a new cycle is logged. However, in a more complicated
system, when robots are independent in their tasks, the described criterion may
not hold; thereby making identification of cycles a challenging task. Section 4.2
briefly describes an off-line cycle detection method that can be applied to a more
complicated station.

3.3 Services

Having real-time data from factory floors abstracted into operations, various al-
gorithms can be run in the form of services, such as visualizations, optimiza-
tion, and prediction to understand and improve the station. Two services are
highlighted below, they help operators maintaining the station by visualizing the
ongoing operation.

Real-time resource based operation visualization

Information such as execution time for each cycle, execution time for each oper-
ation, total waiting time, operations where robots wait for each other are, among
others important in order to maintain and develop the station. An overview of
ongoing operations can be visualized using real-time Gantt charts. Operators and
engineers responsible for maintaining and developing the station use these charts
to keep track of ongoing processes at the station. Figure 2 shows a snapshot of a
real-time Gantt chart of ongoing resource operations, appended with additional

59

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

information such as execution time for each operation. In the figure, each robot
is identified by its name and has two rows corresponding to it. The first row
traces “routines” while the second row traces “wait” operations. Similarly, past
cycles can be visualized in the similar way as seen in Figure 3. Which shows
a historical cycle annotated with additional information such as cycle duration,
start and stop time, and a unique name identifying the cycle.

Figure 2: A real-time Gantt view of operations running in the station.

Figure 3: A historical Gantt view of the operation executed in the station.

Real-time operation-centered visualization

Knowledge relating to the relations between operations serve as important in-
put during analysis and optimization of the system. Relations between various
operations are interesting for several reasons. One of them being that, certain
combinations might not be desired during execution. Instead of using a resource-
centered view discussed in section 3.3, one can visualize operations and their
relations in a Gantt view as seen in Figure 4.

Take as an example robot r8255 highlighted within a box in the same fig-
ure. We see that r8255_ArcSoftServoTrap, which is the operation which

60

4. TOWARDS CREATING MODELS

relates to the activation of the weld gun, runs after operations,
r8255_D910WeldDefault2 and r8255_D910WeldDefault3. Also, op-
erations
r8255_D910WeldDefault2, r8255_D910WeldDefault3 and
r8255_D911WeldDefault1 run in a sequence, this relation can be deduced
by a quick visual inspection of the Gantt chart. Though visual inspections, such
as these, are possible, they are highly time-consuming and often inaccurate. As
the number of interacting resources increases, so does the complexity in finding
relations. Automated services using computational methods, are helpful in per-
forming the same analysis, but with a higher degree of accuracy and is discussed
in the next section.

Figure 4: Real-time view of ongoing operations and the number of times they
have run.

4 Towards creating models
The data generated and the messaging structure can be further used in various
automated services. One such example is prediction services. These services
use past and present data to make certain predictions regarding the factory floor.
Predicting potential errors and failures can help prepare operators early on for
what is coming and thereby mitigating downtime. For example, predicting the
replacement of the welding tip by analyzing tip-dress operations that are respon-
sible for cleaning the welding tip as explained by [12]. Similarly, access to
several cycles of historic data opens up possibilities to predict a variety of KPIs
such as cycle times, delays, maintenance requirement etc, that help in evaluation
and maintenance of the station.

Another area of use relates to optimization services which can also benefit
from the aggregated data. Optimization services use known models to find op-
timal sequences based on a given set of constraints. Dahl et. al. [11] present
a method to optimize the sequence of operations with the aim of reducing cy-
cle time. On the other hand, [19] and [20] focus on optimizing energy use by

61

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

finding optimal operation sequences, such that the overall cycle time is constant
while specific operations run at lower speeds, thereby saving energy. These two
methods can be combined and used for online optimization of sequences to find
an optimal sequence that respects a given specification on time and energy. As
these methods rely on the idea of operations, they can easily be integrated in the
defined architecture to use the messaging structure.

Both, prediction services and optimization services, require a model defining
the behaviour of the system to operate upon. These models could be created by
operators with sufficient knowledge of the system. However, this requires an
enormous amount of effort. First to create and then to maintain these models as
the system evolves. It would be of interest if one could create a model of the
manufacturing process automatically using the available data that would capture
the underlying behaviour.

In the following section, focus will be on analyzing the data in an off-line
manner in order to understand the manufacturing station by creating a model of
it. Using the generated and captured data, as explained in the previous sections,
it is possible to analyze and understand the behavior of the system. The aim of
this section is to illustrate the potential uses of the data using specific tools and
algorithms currently available. To this end, process mining has been used for
automated analysis.

4.1 Process Mining

Process mining is a field of study that deals with process discovery from logged
data [21]. In addition to that, process mining also includes conformance check-
ing and enhancement. By looking at sufficiently large logs – spanning over sev-
eral cycles – of labeled data, it is possible to discovery an accurate representation
of the process. The output can be in the form of a Petri net, a transition graph,
or a Business Process Model and Notation (BPMN). Process mining has shown
significant benefit in understanding underlying task flows, bottlenecks, resource
utilization and many other factors within large corporations [22, 23], and also
proved beneficial in healthcare [24, 25, 26] to learn and improve the underlying
process.

Within the manufacturing domain, there have been only a handful of studies
on applying process mining to manufacturing systems. Yang et. al. [27] and
Viale et. al. [28] present a method to apply process mining on manufacturing
data. While the former uses structured and unstructured data generated from
manufacturing system along with operators or workers to provide domain level
knowledge, the latter works with definitions of the system provided by domain
experts to find inconsistencies between model and process. Yahya [29] shares
interesting insights into using process mining to understand manufacturing sys-

62

4. TOWARDS CREATING MODELS

tems using artificially created logs.
However, there seem to be two main factors missing when aiming to apply

process mining to manufacturing systems:

1. Existing methods to generate usable data seem to be scarce.

2. There is a lack of a defined data structure/abstraction that proves beneficial
for generating models from factory data.

The method for data generation discussed in this paper can potentially fill this
missing gap, allowing to use process mining to analyze manufacturing systems.

In this paper process mining algorithms were run using ProM [10] – a process
mining tool box from Eindhoven University of Technology. There are other
alternatives, both, open-source and commercial versions, that can be used in this
case [30]. The choice of tool, however, is due to convenience and that it is open-
source containing a variety of algorithms to choose from.

In order to run the algorithms in ProM, the data is to be structured as tuples
of <caseId,eventId,attributes>. Here, caseId is an identifier for
each cycle in the station. Each cycle identified by the caseId maps to multiple
eventId’s corresponding to operations contained in the cycle. Attributes
usually consisting of timestamp, resource, cellId, etc, are not mandatory but add
additional value to the data during processing. Identification of different produc-
tion cycles – that requires mapping caseID to each operation – is therefore of
key importance in order to be able to perform further analysis.

4.2 Identifying different product cycles
Using tools such as process mining require the event log to be divided into differ-
ent cycles. As described earlier, the ability to identify cycles is highly dependent
on the complexity of the manufacturing station. The data collected can be made
up of individual events, in which case it does not contain any information regard-
ing the overall cycle.

A possible solution to handle this lack of information and achieve automatic
identification of cycles is presented in [31], where the aim is to find cycles for a
program that performs I/O access to a disk. The authors apply frequency anal-
ysis to the collected data to estimate events that signify a cycle change. An-
other example is [32] where the authors use probabilistic methods of estimation-
maximization to infer cycles on a general unlabelled event log.

In the present paper the estimation-maximization proposed by [32] has been
used. Data from the complete manufacturing station was used to detect cycles
and the results were not promising. The reason for this was mainly due to ex-
isting parallelism between all the robots in the station. This parallelism results
in non-deterministic sequences in the aggregated data. However, applying the

63

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

estimation-maximization method to the data from a single robot resulted in de-
tection of sufficiently accurate cycles when compared to the actual cycles logged
in the PLC database.

Each cycle can then be visualized as a Gantt chart for each robot. The result
is shown for two robots (r8253 and r8256) in Figure 5, Robot r8253 makes 26
welds in three different regions and robot r8256 makes 10 different welds. How-
ever, analyzing each cycle is tedious and still does not present an overall system
behaviour. A possible solution is to apply mining and inference algorithms.

The event ActSoftServoTrap is generated when the robot performs a
weld spot, and is, for simplicity, not treated as a different event from its parent
event usually ending with the name “weldDefault” that defines the region being
welded. Even though this event might sometimes be useful for analyzing the
system, it does not add value within this paper, as resulting visualizations of each
robot are spaghetti-like and cannot be easily interpreted. Avoiding the event,
results in an interpretable visualization.

Figure 5: A Gantt chart plotted to show operations performed by two robots in
one cycle of operation.

4.3 Operation view
Once cycles have been identified in the collected data, the operations are then
grouped according to their respective cycles, resulting in the required format that
can be used as input to ProM to find a general model that fits the data. Using the
complete station data results in a large and unintelligible visualization. Hence,
as a first step, we visualize the models obtained using ‘routine’ operations of a
single robot.

64

4. TOWARDS CREATING MODELS

A model is created using the “Directly follows” plugin in ProM, shown in
Figure 6. The model visualizes the nominal behaviour of a single robot (r8255).
Based on our knowledge about the station, we conclude that the three different
sequences outlined in the figure represent the sequences unique for the three car
models produced in the robot station. The operations outside the highlighted
circles are common to all car models.

The nominal behavior described in Figure 6 lacks information regarding the
relationship between the different operations. That is, there is no indication if
two operations always occur after each other or if there is no dependency be-
tween them. To further see the relationship between the operations, and create
a more generalized model of the data, the “Inductive miner” plugin in ProM is
used. The resulting model is shown in Figure 7, here the relations between oper-
ations can also be deduced. The operations on the right hand side of the graph are
executed only after at least one of those, in parallel, on the left have executed.
The resulting models are large and cannot easily be accommodated within the
limits of this paper, better quality images can be accessed along with the log files
online [33].

Figure 6: A simplified view of all observed sequences for robot 8255. The
three distinct sequences for each of the car models operated on by the robot are
highlighted.

65

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

Figure 7: The result from the inductive miner plugin. Here we see the relations
between different operations. A more legible image can be accessed online [33]

4.4 Resource view

Another point of interest would be to analyze product flow through the station.
By that we mean, to visualize the order in which the robots would perform ac-
tions on the car being manufactured in the station.

The “Inductive miner” plugin is used here to process the complete data from
the complete station. Figure 9 shows the resource view for the four different
robots in the example station. As the station is simple and the robots are inde-
pendent of each other, the resulting graph in Figure 9 shows four robots all in
parallel indicating that there is no dependency between the robots.

Generating visual model for large complex stations will provide better un-
derstanding of the system and its flows. In order to highlight the advantages of
having a good understanding of product flows a more complex manufacturing
station is used. This station consists of six robots and can operate on three dif-
ferent products at a time. Figure 8 illustrates the product resource view for this
complex station. When a product enters the station it is first serviced by two
robots, r8601 and r8602, in parallel. Then the product moves forward, to
the second stage, where it is then serviced by three robots in parallel, r8603,
8604 and r8605. Once these three robots complete their task, the car moves
to the next final stage where robot r8606 performs some actions before leaving
the station.

Figure 8: The resource centered view of a larger cell consisting of 6 robots. The
figure shows the sequence in which a product entering the station will be serviced
by the robots.

66

5. CONCLUSIONS AND FUTURE WORK

Figure 9: Viewing a resource centered view of the process, it can be deduced that
the robots are independent of each other.

5 Conclusions and Future work

An architecture that enables capturing robot operation data from existing and
new manufacturing stations was presented in this paper. The presented architec-
ture was implemented on a robot station at an automotive manufacturing com-
pany using the software Sequence Planner. The implemented software makes it
possible to listen to the robot program pointer to extract and abstract out the on-
going operation. This captured data, abstracted as operations, are then visualized
in an online manner using Gantt charts. Which, potentially, will enable operators
to track the progress of the station, thereby helping them during maintenance and
error recovery tasks.

The data was also analyzed in an off-line manner by applying process mining
techniques to understand the underlying behaviour – by creating models – of
the station. We evaluated the use of process mining using the tool ProM to
demonstrate the potential use of the abstracted data in order to create general
models that represent the data. Two different views, of the data, were presented;
one relating to the operation perspective and another representing the product
flow between resources.

5.1 Future work

While process discovery techniques are beneficial during commissioning of man-
ufacturing systems, a number of challenges need to be solved before they can be
effectively used in regular operation. One problem is detection of cycles. The
data aggregated does not indicate when a manufacturing cycle starts or com-
pletes. Hence, a pre-processing step before any further analysis is carried out is
mandatory and poses a hindrance towards real-time model generation. The ex-
ample shown in this paper, as a proof of concept, dealt with a simple station with

67

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

no dependencies between resources. Hence, it was relatively easy to identify
cycles. However, in more complex stations, with several interacting resources
and when each resource is dependent on the product flows from several different
stations, the task of identifying cycles gets much more complicated. A major
challenge remains to be solved before being able to automatically create models.

The methods discussed so far focus on obtaining data from robots. The nat-
ural next step is to also obtain data from PLC’s that control the system. The
authors are also not aware of any existing interfaces to access the PLC’s in the
manner described for robots in this paper. The data from PLC’s is usually in
the form of variable-value pairs and converting these, variable-value, pairs into
operations is going to be challenging task.

6 Acknowledgements

This project was supported by ITEA3 VINNOVA ENTOC (2016-02716) and
VINNOVA LISA 2 (2014-06258). Furthermore, the authors would like to thank
Håkan Pettersson and Stefan Axelsson from Volvo Cars Corporation for their
help and support during the implementation phase of this project.

7 Bibliography

[1] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” in 2016 49th Hawaii International Conference on System Sci-
ences (HICSS), Jan 2016, pp. 3928–3937.

[2] J. Campos, C. Seatzu, and X. Xie, Formal methods in manufacturing. CRC
press, 2014.

[3] G. Frey and L. Litz, “Formal methods in PLC programming,” in Systems,
Man, and Cybernetics, 2000 IEEE International Conference on, vol. 4,
2000.

[4] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falkman, “Inte-
grated virtual preparation and commissioning: Supporting formal methods
during automation systems development,” IFAC-PapersOnLine, vol. 49,
no. 12, pp. 1939–1944, 2016.

[5] M. Dahl, A. Albo, J. Eriksson, J. Pettersson, and P. Falkman, “Virtual real-
ity commissioning in production systems preparation,” in 22nd IEEE Inter-
national Conference on Emerging Technologies And Factory Automation,
2017.

68

BIBLIOGRAPHY

[6] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of man-
ufacturing systems,” Journal of Computational Design and Engineering,
vol. 1, 2014.

[7] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture,
1st ed. Springer Publishing Company, Incorporated, 2009.

[8] “Snap 7.” [Online]. Available: http://snap7.sourceforge.net/

[9] A. Farooqui, P. Bergagard, P. Falkman, and M. Fabian, “Error handling
within highly automated automotive industry: Current practice and re-
search needs,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 9 2016.

[10] Process Mining Workbench, last accessed Mon Apr 3 10:30:08 2017.
[Online]. Available: http://www.promtools.org/doku.php

[11] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falkman, “Se-
quence planner: Supporting integrated virtual preparation and commis-
sioning,” in The 20th World Congress of the International Federation of
Automatic Control, 9-14 July 2017, 2017.

[12] D. Nord and H. Wahlqvist, “The tweeting robot - collection and processing
of data from industrial robots,” Master’s thesis, 2016.

[13] L. Ribeiro and J. Barata, “Survey paper: Re-thinking diagnosis for future
automation systems: An analysis of current diagnostic practices and their
applicability in emerging IT based production paradigms,” Comput. Ind.,
vol. 62, no. 7, Sep. 2011.

[14] A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lundholm,
and B. Lennartson, “An event-driven manufacturing information system ar-
chitecture,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 547–554, 2015.

[15] “Apache Active MQ,” 2017. [Online]. Available: http://activemq.apache.
org

[16] “Apacha Kafka,” 2017. [Online]. Available: https://kafka.apache.org/

[17] “ABB Robot SDK,” 2017. [Online]. Available: http://developercenter.
robotstudio.com

[18] K. Bengtsson, B. Lennartson, and C. Yuan, “The origin of operations: In-
teractions between the product and the manufacturing automation control
system,” IFAC Proceedings Volumes, vol. 42, 2009.

69

http://snap7.sourceforge.net/
http://www.promtools.org/doku.php
http://activemq.apache.org
http://activemq.apache.org
https://kafka.apache.org/
http://developercenter.robotstudio.com
http://developercenter.robotstudio.com

PAPER 2. FROM FACTORY FLOOR TO PROCESS MODELS: A DATA GATHERING...

[19] S. Riazi, O. Wigström, K. Bengtsson, and B. Lennartson, “Energy and peak
power optimization of time-bounded robot trajectories,” IEEE Transactions
on Automation Science and Engineering, 2017.

[20] N. Sundström, O. Wigström, S. Riazi, and B. Lennartson, “Conflict be-
tween energy, stability, and robustness in production schedules,” IEEE
Transactions on Automation Science and Engineering, vol. 14, pp. 658–
668, 2017.

[21] W. van der Aalst, Process Mining. Springer Nature, 2016.

[22] W. van der Aalst et al., “Business process mining: An industrial applica-
tion,” Information Systems, vol. 32, no. 5, pp. 713–732, 2007.

[23] W. M. P. van der Aalst, “Business process management: A comprehensive
survey,” ISRN Software Engineering, vol. 2013, pp. 1–37, 2013.

[24] R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst, and
P. J. M. Bakker, Application of Process Mining in Healthcare - A Case
Study in a Dutch Hospital, ser. Biomedical Engineering Systems and Tech-
nologies. Springer Nature, 2008, pp. 425–438.

[25] A. Partington, M. Wynn, S. Suriadi, C. Ouyang, and J. Karnon, “Process
mining for clinical processes,” ACM Transactions on Management Infor-
mation Systems, vol. 5, no. 4, pp. 1–18, 2015.

[26] E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro, “Process min-
ing in healthcare: A literature review,” Journal of Biomedical Informatics,
vol. 61, pp. 224–236, 2016.

[27] H. Yang, M. Park, M. Cho, M. Song, and S. Kim, “A system architecture for
manufacturing process analysis based on big data and process mining tech-
niques,” in 2014 IEEE International Conference on Big Data (Big Data),
10 2014.

[28] P. Viale, C. Frydman, and J. Pinaton, “New methodology for modeling
large scale manufacturing process: Using process mining methods and
experts’ knowledge,” in 2011 9th IEEE/ACS International Conference on
Computer Systems and Applications (AICCSA), 12 2011.

[29] B. N. Yahya, “The development of manufacturing process analysis: Lesson
learned from process mining,” Jurnal Teknik Industri, vol. 16, no. 2, 2014.

[30] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Marrella,
M. Mecella, and A. Soo, “Automated discovery of process models from
event logs: Review and benchmark,” CoRR, vol. abs/1705.02288, 2017.

70

BIBLIOGRAPHY

[31] P. C. Diniz and D. R. Ferreira, “Automatic extraction of process control
flow from i/o operations,” in Business Process Management, M. Dumas,
M. Reichert, and M.-C. Shan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 342–357.

[32] D. R. Ferreira and D. Gillblad, “Discovering process models from unla-
belled event logs,” in Business Process Management, U. Dayal, J. Eder,
J. Koehler, and H. A. Reijers, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 143–158.

[33] “Access data online.” [Online]. Available: https://chalmersuniversity.box.
com/v/fromFactoryToProcess

71

https://chalmersuniversity.box.com/v/fromFactoryToProcess
https://chalmersuniversity.box.com/v/fromFactoryToProcess

72

Paper 3

Towards Automatic Learning of Discrete-Event
Models using Queries and Observations.

Ashfaq Farooqui, Petter Falkman, and Martin Fabian.

Submitted for possible journal publication, 2018

Comment: The paper has been reformatted for readability, but is
otherwise unchanged.

Towards Automatic Learning of Discrete-Event
Models using Queries and Observations.

Ashfaq Farooqui, Petter Falkman, and Martin Fabian.

Abstract

Model-based techniques are being embraced by the manufacturing
industry in their development framework. Though model-based ap-
proaches have advantages over existing methods, such as allowing
offline verification and validation before physical commissioning,
they also have their own challenges. Firstly, models are typically
created manually and hence are prone to errors. Secondly, once a
model is created, tested, and implemented within the factory floor,
there is an added effort required to maintain and update the models.
This paper is a preliminary study of the feasibility of automatically
obtaining formal models from virtual simulations. Different tech-
niques can be used to build models automatically, two of which are
active and passive learning, respectively. We present the founda-
tional algorithm from the active automata learning community to
learn discrete-event models from virtual simulations. An abstract
model in the form of operations is learned by applying this algorithm
on a discrete simulation model. A major bottleneck identified when
applying active learning is the generation of counterexamples. We
present an approach to integrate active and passive learning; where
passive models comprised of operation sequences observed during
the nominal operation of the system, provide the counterexamples.

1 Introduction
The automotive manufacturing industry, and manufacturing industries in gen-
eral, are gradually moving towards simulation-based techniques during the initial
phase of setting up the manufacturing systems known as the virtual commission-
ing phase [1]. During this phase, a virtual model of the manufacturing station
is first created in a simulation software and is tested in simulation to ensure cor-
rectness, before physically commissioning the station.

Also, model-based techniques that offer design, validation, verification, and
testing, are being actively adopted within the manufacturing industry [2, 3] to
formally ensure correctness of complex systems. These techniques rely on us-
ing a formal model that describes the station, which are then used to verify the

75

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

requirements and specifications of the station. The last few years have seen a
drastic advancement in model-based algorithms, within both the more theoret-
ical formal methods, as well as the application-oriented computer science do-
mains. These advancements have rendered model-based methods feasible for
use on regular manufacturing systems. Model-based techniques are usually cou-
pled with virtual technologies such as simulations [4] and virtual reality [5] in the
virtual commissioning phase [1], which leads to shorter physical commissioning
times. However, creating formal models is a challenging task that requires skill,
in-depth knowledge of the system, and creativity.

Models specifying the intended behaviour of the station need to be created
early during the specification and design phases of virtual commissioning. In-
correct or incomplete models are misleading, and can unnecessarily complicate
the development process. In reality, these models do not always capture the
complete behaviour, and even when they do they become outdated as the station
evolves over time. A possible method to deal with incorrect and outdated models
could be to create them automatically. Several methods have been proposed in
the literature dealing with automatically creating models. These methods work
by either observing the behaviour of the components in the system, or by actively
interacting with the system and then using specially designed techniques to con-
struct a model. These techniques are now receiving increased attention within the
verification and testing communities [6, 7], and are known as automata learning
(a.k.a grammatical inference) [8, 9].

Automata learning techniques can be broadly classified into two types, pas-
sive learning and active learning. An application of passive learning was pre-
sented previously in [10]. Also, in [11] we demonstrated the feasibility of ap-
plying active learning to real-world systems. In active learning, a hypothetical
model is first presented by querying the system; then an algorithm tries to find
counterexamples that show that the model is incorrect with respect to the mod-
eled system. The model is then automatically updated so as to also account for
the suggested counterexample. This process is repeated till no counterexample
can be found, meaning that that suggested model accurately captures the be-
haviour of the system. As there does not exist a behavioral model defining the
system to compare with, finding counterexamples becomes a complex task. The
algorithm defined in [11] exhaustively simulates all possible paths in the sug-
gested model to find counterexamples. Exhaustive simulation of all the different
behaviours in the simulator is time consuming. In this paper we look at alleviat-
ing the problem of finding counterexamples by extending the approach to let the
active learner use the passive model.

76

2. PREREQUISITES

1.1 Outline
Section 2 defines the terminologies used throughout the paper. Section 3 briefly
summarizes the state of research for both active and passive algorithms, their
shortcomings and their previous applications in manufacturing. Section 4 then
presents the active learning algorithm L∗. We then propose an integrated ap-
proach in Section 5 to use both active and passive techniques towards finding
counterexamples.The proposed approach is evaluated on a simulated robotic arm
presented in Section 6. Finally, Section 7 concludes with some remarks and sug-
gestions for future work.

2 Prerequisites
This section introduces the modeling formalisms Automata and Operations, to-
gether with the terminology used throughout the paper.

2.1 Alphabets, Words and Languages
Let Σ, known as the alphabet, represent a finite set of symbols, then Σ∗ is used
to denote the set of words of finite length over Σ including the empty word ε, i.e
a set of sequences of symbols formed by concatenation. Concatenation of sets
is represented using the dot (·) operator, and concatenated symbols are written
together without a space. For example, for two sets A = {a} and B = {b}, set
concatenation is represented by A ·B and symbol concatenation by ab. Note that
A · B = {ab}. A language L ⊆ Σ∗ contains the set of words over Σ including
the empty word ε.

A set of words is said to be prefix-closed if the prefix of every member in the
set is also a member. Suffix-closed sets are defined analogously.

2.2 Deterministic Finite State Automata
Definition 1 (DFA). An automaton is defined as a 4-tuple 〈S,Σ, δ, sq〉, where:
S is the set of states
Σ the alphabet contains the set of operations, as symbols
δ defines a transition function S × Σ→ S

sq is a set of states in S representing the marked states

The marked language given by Lm ⊆ L, is the set of traces that result in a
marked state. There are many automata that represent the same language, but it
is known [12] that among all of these automata there is a minimal one, with the
smallest number of states and transitions. This automaton is unique.

77

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

2.3 Operations

The system to be learned can perform several tasks, and these need to be pre-
defined. To define the tasks we use the abstraction of operations. Each operation
corresponds to one specific function performed by the target system.

Definition 2 (Operation). An operation is defined as a 4-tuple

〈PreGaurd,PreActions,PostGaurd,PostActions〉

where:
PreGuard, is a predicate over the state that defines when the operation is allowed
to execute;
PreActions, defines assignments to configuration parameters in the state that will
execute the operation in the target system;
PostGuard, is a predicate over the state that defines when the operation com-
pletes;
PostActions, defines assignments to configuration parameters in the state that
ensures completion of the operation.

For simplicity, we will consider operations that are two-state. That is, when
an operation is triggered it transforms the system from one state to another when
the operation completes; no in-between states will be considered.

3 Background

A manufacturing line consists of several manufacturing stations, which are in-
turn built up of interacting parts such as robots, clamps, fixtures, and conveyors.
Each station is able to perform several operations. These operations, executed
by the specific resources in the station, are controlled by a PLC that controls the
station. Based on the product requirements, the PLC selects a specific sequence
of operations that need to be performed. The sequence of operations chosen are
either hard-coded within the PLC or saved separately in a database that the PLC
has access to. We would like to automatically create a formal model of all these
hard-coded sequences in order to verify the requirements of the station. Addi-
tionally, the model can suggest a better or optimized sequence that can replace
the older sequences. The following section looks at different ways to create these
models by employing Grammatical Inference techniques.

Grammatical Inference [9] is associated with various fields of study, like
computational linguistics, machine learning, formal learning theory, and compu-
tational biology, to name but a few. Hence, it is also known by different names
depending on the field, such as Automata Learning, Grammatical Induction,

78

3. BACKGROUND

Figure 1: Difference between active and passive methods

Grammar Learning etc. An in-depth survey of grammar inference techniques
is provided in [8, 13, 14].

A large body of work already exists in this field and can be classified into two
categories, passive and active learning. Both these methods employ a learning
algorithm we call the learner that creates the model either by processing the logs
offline in case of passive learning, or by actively querying the system in case
of active learning. Figure 1 visualizes the difference between the two. Passive
learning deals with first collecting data from the station, and then by processing
this data to build the model. Active learning is an interactive method where the
learner interacts with the actual system to build the model.

3.1 Passive learning

Passive learning algorithms take as input sequences observed from the target
system. The algorithm then builds a prefix-tree-acceptor (PTA), which is a tree-
like DFA, built by considering all prefixes of an observation as states. The PTA is
updated on every iteration, where states are merged based on certain heuristics.
Passive learning algorithms are divided into Exact Algorithms and Approximate
Algorithms.

Exact algorithms aim to create a model that exactly represents the input data.
Some of the algorithms under this category are MMM [15], BICA [16], and
EXBAR [17] – all of which start with a basic trivial model as initial hypothe-
sis. Then, for every observed sequence of operations, a search is performed to
find deviations between the model and the observations. If a deviation is found,

79

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

the hypothesis is updated so as to contain the new observation. This process is
repeated for all observations in the log. The primary differences in these algo-
rithms lies in the type of search performed to find deviations.

Approximate algorithms, on the other hand, rely on certain heuristics or deci-
sion techniques to provide a hypothesis, which is approximately close to reality.
Examples of these algorithms are EDSM [18], SAGE [19] and ED-BEAM [17].
These algorithms work in similar ways to their exact counterparts, the differ-
ence lies in the way they perform the state merging. Additionally, these algo-
rithms keep updating the hypothesis by backtracking and improving on previous
merges. In [20] a general survey of state merging algorithms is presented and [9]
introduces learning algorithms in general. Passive algorithms require event logs
with both positive and negative outcomes in order to return a valid generalized
model of the system.

Knowledge regarding the sequences of operations performed by the station
is helpful in developing a model for it. A method for collecting data from robots
of a manufacturing station is discussed in [21]. It describes an architecture in
which the actions performed by the robots are captured using predefined adapters
that connect to these robots. The actions are then processed and abstracted as
operations. Each operation is appended with extra information such as start and
stop time, and the name of the robot that performed the operation. Similarly, PLC
commands are captured by listening to variable changes using the OPC-UA [22]
protocol and store the ongoing operations to build observed sequences. Passive
learning then uses several sequences together to create a model that captures the
behaviour of the station.

Building models, using the data captured from robots in [21], is presented
in [10], where the process mining toolbox called ProM [23] was used to create
models from the captured data. The models obtained describe commonly ob-
served sequences. To this end, mining algorithms use heuristics to create the
model. Infrequent behavior is therefore treated as noise in the data and hence
discarded.

The resulting models obtained in [10] provide insight into the behaviour of
the manufacturing station. The different perspectives presented to analyze the
behaviour are: relations between various operations, relations between the op-
erations and resources, and the product flow through the station. However, the
model did not capture any unseen behaviour of the station. In order to be able to
capture a more general model we turn towards active learning techniques.

3.2 Active Learning

Algorithms where the learner actively queries the target system and learns more
about it at every iteration are classified as active learning. The learner does not

80

3. BACKGROUND

have access to all the data to begin with, rather it has an interface to the target
system in the form of a teacher. The learner first starts with an initial hypothesis,
which is further improved at each stage by querying the actual system.

A seminal paper in the field of active learning is Dana Angluin’s work on
learning minimal DFA’s using queries and counterexamples [24]. The outcome
of this paper is the L∗ algorithm that allows the learner to pose two types of
questions to a teacher. Membership queries ask whether the language is ac-
cepted or not, and equivalence queries ask if the suggested hypothesis accurately
represents the system. If the teacher answers “yes” to an equivalence query, the
algorithm terminates and the current hypothesis is returned. Else, the teacher
provides a counterexample disproving the given hypothesis. The hypothesis is
then updated taking the counterexample into consideration. The algorithm re-
peats these steps and terminates when a valid hypothesis is found. Queries for
membership are fairly easy to handle; equivalence queries on the other hand are
proved to be a NP-complete problem [25].

From an algorithmic perspective, there have been only a handful of improve-
ments and new approaches suggested in this field. Schapire [26] improves the
L∗ algorithm by handling the counterexamples that include a homing sequence
when it is not possible to reset the target system. Kearns and Vazirani [27] intro-
duce the idea of discrimination trees, which is further used by Malte et al. [28]
who suggest the TTT algorithm.

From a more practical perspective, [24] has inspired tremendous amount of
work that has yielded positive results. Active automata learning has been applied
to verify communication protocols using Mealy machines [29, 30]. By using a
suitable abstraction interface Arts [31] learn IO automata. Other techniques are
directed towards learning models of software systems. Malte et al. [32] apply
active automata learning towards learning models of software programs mod-
eled as register automata, while Smeenk et al. [33] focus on learning embedded
software programs.

A method to run active learning algorithms was presented in [11] using a
simulated model of the actual system. The test was performed on a robotic arm
that could perform eight different operations on a given matrix grid. The task
was to learn the language of the simulated system using the L∗ algorithm. The
limitation of this method was to find counterexamples, which were obtained us-
ing a random walk algorithm. Counterexamples were generated by randomly
choosing one transition to walk along the hypothesized DFA, and then running
the same operation in the simulation until an inconsistency that disproves the
hypothesis was found. This method worked well for smaller systems where the
number of possible operations were few. However, as the number of possible
operations increased, the processing time grew aggressively. Additionally, the
algorithm would end up in loops and not terminate. This is a major problem

81

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

when applying active learning techniques to real-world systems. A possible step
forward would be to leverage benefits of passive learning to improve actively
learned models.

4 The L∗ Algorithm
The L∗ algorithm [24] learns a minimal DFA accepting a regular language Lm ⊆
Σ∗ over a finite alphabet Σ. Two types of queries need to be answered to make the
algorithm work, and these are answered by the teacher. For pedagogic reasons,
we will refer to the algorithm as the learner that interacts with the teacher using
queries. The two types of queries made by the learner are:

• Membership queries: given a word w ∈ Σ∗, the teacher replies positively
if w belongs to Lm, else the reply is negative.

• Equivalence queries: given a hypothesis DFA H, the teacher must ver-
ify if H accurately represents the language Lm. If not, the teacher must
provide a counterexample c ∈ Σ∗, such that, c is incorrectly accepted or
rejected byH.

The algorithm terminates when the teacher cannot find such a counterexample.
The L∗ algorithm is outlined in Figure 2.

At any given time the learner updates its knowledge about the target lan-
guage. Internally, this knowledge is represented as an observation table. The
observation table has three parts, a non-empty finite prefix-closed set S, a non-
empty finite suffix-closed set E, and a transition function T mapping ((S ∪
S.Σ).E) to {0, 1}. An example is shown in Table 1. The table is made up of
two parts: the top part corresponds to rows ranging over a finite set S ⊆ Σ∗; and
the lower part, with rows ranging over S.Σ i.e words of the form sa, where s ∈ S
and a ∈ Σ. Columns range over a finite set E ⊆ Σ∗. The function T is then the
values represented by this table. If u ∈ S ∪ S.Σ and v ∈ E, then T (u)(v) –
the value in the cell corresponding to the row u and column v – results in 1 if
uv ∈ Lm else 0. The cells in the observation table are filled using membership

E
ε a aa

S ε 0 1 0

S.Σ
a 1 0 0
b 0 0 0

Table 1: A simple observation table where at least a is contained in Lm.

82

5. TOWARDS INTEGRATING ACTIVE AND PASSIVE LEARNING

queries. Table 1, with Σ = {a, b}, indicates Lm accepts at least a, and does not
contain the words ε, b, aa, or aaa.

The learner uses the observation table to construct a hypothesis DFA from the
different rows in the table, where the rows represent the states of the DFA. Rows
with the same content result in a single state. The marked states are represented
by row(s) where s ∈ S and T (s)(ε) = 1 . The initial state corresponds to a row
with the empty word, i.e row(ε).

In order to be able to construct a hypothesis, the observation table needs to
be closed and consistent.

• An observation table is said to be closed if for all t ∈ S, a ∈ Σ there is an
s ∈ S such that the row(s) = row(t.a). In other words, each transition
reaches some state in the hypothesis.

• A table is consistent if for s1 ∈ S and s2 ∈ S and row(s1) = row(s2)
then for all a ∈ Σ, row(s1.a) = row(s2.a). In other words, there is no
ambiguity in the transition.

The learner ensures that the table is closed and consistent by updating the sets
S and E according to the algorithm in Figure 2. Once the table is closed and
consistent, the learner submits a hypothesis to the teacher requesting an equiv-
alence query. If the teacher provides a counterexample the observation table is
updated with the traces from the counterexample, new queries are made, and a
revised hypothesis is submitted when the table is again closed and consistent.
This process is repeated until a hypothesis is accepted by the teacher.

Example run

To explain the above algorithm an example is presented in this section. Con-
sider a language Lm = {x ∈ {a, b}∗| the number of a’s and b’s are even}.
When the algorithm starts, the table is empty and represented by S = E = ε.
Figure 3 shows the evolution of the observation table and the hypothesis. The
learner starts with an empty table. Using membership queries it constructs the
first closed and complete table as seen in Figure 3b, presenting a hypothesis to
the teacher. The teacher then replies with a counterexample abab. The coun-
terexample is taken into consideration and the observation table and hypothesis
are further updated to the one seen in Figure 3c. At this point the hypothesis is
accepted by the teacher as the model is complete.

5 Towards Integrating Active and Passive learning
Passive learning algorithms result in models that contain only the observed se-
quences, in contrast to the models obtained using active learning. The time

83

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

Result: A Hypothesis DFAH
initialization S,E ← ε;
repeat

while the table is not closed or not consistent do
if table is not closed then

find u ∈ S, a ∈ A such that row(ua) 6= row(s)∀s ∈ S;
S ← S ∪ {ua};

end
if table is not consistent then

find s1, s2 ∈ S , a ∈ A and e ∈ E such that
row(s1) = row(s2) and row(s1ae) 6= row(s2ae);
E ← E ∪ {ae};

end
end
Construct the hypothesisH to the teacher if the teacher replies no with
a counterexample c then
S ← S ∪ prefixes(c)

end
until the teacher replies yes;
returnH

Figure 2: The L∗ Algorithm

84

5. TOWARDS INTEGRATING ACTIVE AND PASSIVE LEARNING

ε

ε 1

a 0
b 0

(a) Initial table

ε

ε 1
a 0

b 0
aa 1
ab 0

qa

start

qb

a,b

b

a

(b) First hypothesis
ε a b

ε 1 0 0
a 0 1 0
ab 0 0 0
aba 0 0 1
abab 1 0 0

b 0 0 1
aa 1 0 0
abb 0 1 0
abaa 0 0 0
ababa 0 1 0
ababb 0 0 1

qa

start

qb

qcqd

a

b b
a

b

a

a
b

(c) Updated table with counterexample and the second hypothesis

Figure 3: Evolution of the observation table and hypothesis while learning a
language which accepts even number of a’s and b’s

needed for successfully running active learning algorithms is significantly higher,
though. The contributing factor to this is finding good counterexamples, which
relies on exhaustively simulating all possible scenarios.

To tackle this challenge, we integrate active and passive learning so that coun-
terexamples can be found from passively learned models we call this method of
learning L+. Figure 4 illustrates the data flow. Data from a live manufacturing
plant is collected for passive learning purposes. A simulated model of the same
manufacturing station is connected to an implementation running the L∗ algo-
rithm, through a teacher. The teacher also has access to the passively learned
model.

In order to find a counterexample, the teacher needs to compare the two mod-
els and find the paths that exist in the passive model but not in the hypothesis
generated by the L∗ learner. That is, rather than performing random walk on the

85

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

Figure 4: Proposed structure for L+

generated hypothesis model and the simulation, as done in [11], we use the ob-
served operation sequences from the passive model. A passive model is obtained
by running a sufficient number of diverse cases so as to collect all the nominal se-
quences. If any of these sequences do not conform with the hypothesis presented
by the learner, then a counterexample is found.

Figure 5 describes an algorithm to find counterexamples given a passive
model. We first extract the unique sequences found in the passive model; it
should be noted here that, for simplicity, loops are not taken into consideration.
Then iterating over the list of sequences, for each sequence check if it exists in
the hypothesis. If it does not exist we have found a counterexample. The al-
gorithm terminates when there are no more sequences or if a counterexample is
found.

This method, of using passively learned models along with active learning,
improves the speed of learning. This improvement is because we no longer need
to run the simulation to find counterexamples. Though there is an improvement
in the time required to learn, this method is not perfect. As the collected data
represents only valid operation sequences, a different method to find invalid op-
eration sequences will still be needed. Additionally, for this to work, we assume
that the complete nominal behaviour is captured in the passive model.

Another problem arises when there are loops present in the passive model. If
so, the number of unique valid sequences generated from the passive model is un-
bounded. Hence, it is better to refine the sequences to avoid repeatedly traversing
along loops. For larger systems it would be beneficial to use graph isomorphism
techniques [34] that can compare models graphically to find counterexamples.

86

6. L+ LEARNING APPLIED TO A ROBOTIC ARM

Data: The passive model, M
Input : Hypothesis H
Output: A sequence of operations that define a CE
Initialization L← unique paths in M
repeat

l← first sequence in L;
if l exists in H then

remove l from L

else
CE is found l

end
until a CE is found or L is empty;
if CE found then

return l
else

return no CE exists
end

Figure 5: Finding a counterexample (CE) from the captured nominal operation
sequences

6 L+ learning applied to a robotic arm
In this section we apply the L+ learning method previously defined to construct
a model of a simulated robotic arm. The arm can move in the X and Y directions,
and is fitted with a gripper that allows the arm to grip objects. The gripper has the
ability to extend and retract in order to grip. The program contains the required
logic to control the arm, which includes moving the arm in four directions: up,
down, left, and right; extending, retracting, closing, and opening the gripper.

The different operations are controlled by sending commands to the simula-
tor. Additionally, the simulator program keeps track of the current position of
the arm in both the X and Y direction using sensors. Figure 6 provides an image
of the simulation.

In order to be able to learn the model of this robotic arm, the teacher must
be able to communicate with the simulation environment. Furthermore, the al-
gorithm requires the alphabet (the operations) as input, and also a technique to
generate counterexamples. The experimental setup can find counterexamples us-
ing two alternative approaches, from the passive model, as well as the simulated
system. In this section we explore these components and provide the end result
from the learning algorithm.

The example will be treated as a purely discrete system with no parallelism.
That is, only one operation is allowed to execute at any given time.

87

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

Figure 6: Simulation of the robotic arm.

6.1 Defining the system

Operations performed by the simulation need to be defined for the teacher and
the learner in the format specified in Section 2. The guard predicates for each
operation must specify exactly when the operation is allowed to execute and
when it can finish. Correspondingly, the actions need to specify the variable
assignments to start and stop the operations. The guards ensure that only one
operation can execute at a time, even though it is possible that several operations
are enabled. Additionally, the guards must ensure that the arm cannot move
when it is extended, and can open and close the gripper only when it has already
extended.

The goal is constructed according to what we want to learn about the system.
For simplicity, we define the goal to be the initial state of the arm.

6.2 Results and Discussions

Using the setup as defined above the learning algorithm was capable of learning
a model of the robotic arm. In order to learn how the algorithm scales as the
simulation grows, the arm was allowed to move along different sizes of the grid.

To be able to build models passively we generated random sequences of ob-
servations from the simulator. Then, using ProM [23], a tool for process mining,
models were created to represent the data. Figure 7 shows the model obtained
using the inductive miner plugin, from ProM. The model was developed by gen-
eralizing 354 observed sequences, of which about 80 were unique, from a grid
size of 6x6. The model represents the general relationship between the differ-
ent available operations. For example, grip and release can occur only
when extend has occurred. Also, the movement operations cannot occur when
the arm is already extended. However, this passive model does not capture any
information regarding the grid size.

88

6. L+ LEARNING APPLIED TO A ROBOTIC ARM

Figure 7: Model learned from observed sequences using ProM

In order to capture the grid in the model, we turn towards active learning.
First, we create a model of the system using the simulation environment to find
counterexamples. Figure 8 presents the learned model while learning the four op-
erations related to gripping, while Figure 9 shows the model obtained on learning
only the operations involved in motion. Both these were learned against a grid
size of 3x3, seen in Figure 6. The model obtained is more accurate compared to
the passively learned model, but finding counterexamples by simulation is time
consuming as each sequence needs to be run in the simulator. Each operation
requires at least 2-3 seconds to complete. Based on the number of sequences
simulated and their length the time to simulate would be several minutes.

L+ L∗

Grid States obs Eq Mq Time(s) Eq Mq
2x2 17 30 3 5800 420 5 2980
3x3 37 30 4 12800 2530 8 17600
4x4 65 45 7 38400 4290 9 55230
5x5 101 34 8 59800 6400 10 102780

Table 2: Observations on the performance of L∗ andL+ while learning the model
of the simulated robotic arm.

In order to avoid running simulations to find counterexamples we used se-
quences observed from the real system. We randomly generated several obser-
vation sequences to build a passive model. This model was then used to find
counterexamples as explained previously in this paper.

Table 2 presents our observations from applying the L∗ algorithm and the L+

algorithm. The total number of states corresponding to the grid size is shown
in columns states and grid, respectively. The column obs contains the number
of unique observations that were captured to be processed in a passive model.
Eq and Mq represent equivalence and membership queries, respectively. The

S t a t e (s 3)

t o u

S t a t e (s 2)
e x t e n d

S t a t e (s 1)

t o u

S t a t e (s 5)
e x t e n dr e t r a c t

t o u

g r i p r e t r a c t

r e l e a s e

t o u

Figure 8: Learned model of extending and gripping

89

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

S t a t e (s 4) t o u

S t a t e (s 5)

r i g h t

S t a t e (s 9)

d o w n

S t a t e (s 8)

u p

S t a t e (s 2)

le f t

l e f t

t o u

S t a t e (s 7)

d o w n

S t a t e (s 3)

u p

u p

t o u

le f t

u p

r i g h t

t o u

S t a t e (s 1)

le f tr i g h t

t o u

u p

S t a t e (s 1 0) t o u

r i g h t

d o w n

d o w n

lef t

t o u

r i g h t r i g h t

d o w n

u p

t o u

d o w n

lef t

t o u

Figure 9: Learned model consisting of the four movements

90

7. CONCLUSION AND FUTURE WORK

total time taken to find counterexamples is under the column time, measured in
seconds. This time corresponds to simulation time, where each operation is as-
sumed to take 2 seconds to complete. Experimentally, we found that the number
of equivalence queries were lesser when using a passive model. However, the
difference was not large. The number of membership queries on the other hand
showed a significant variation. This was because the counterexample and all its
prefixes need to be populated in the observation table. If the counterexample is
long and several of its prefixes are observed for the first time, the learner would
require more membership queries to complete the table. On the other hand, if
the the prefixes of the counterexample already exist in the observation table, the
number of membership queries reduces. While in the case of L∗, the random
walk determines the length of the counterexample. If it has a higher restart prob-
ability, restarting frequently, then the counterexamples are smaller in length. The
comparison provided corresponds to the L∗ in which the random walk algorithm
had a restart probability of 20%.

The resulting models were no different from the models obtained by using
only the L∗ algorithm.Larger models required an increased number of observa-
tions to ensure all possible sequences were captured. Similarly, In the case of
L∗, as the models grew in size, the random walk algorithm needed to have lower
restart probability guaranteeing longer sequences.

7 Conclusion and Future work
In conclusion, this paper presented an approach to learn discrete-event models
using active and passive learning techniques. To this end, the L∗ algorithm, a
fundamental active learning algorithm, was briefly described. A major bottle-
neck of applying this learning technique is to find counterexamples. This paper
presented an approach – known as L+– integrating active and passive learning
techniques to help find counterexamples. Furthermore, a simulated robotic arm
was learned using the techniques presented in this paper.

While using the observed sequences as counterexamples it was noted that
the number of membership queries was usually more than needed. This increase
depended on the size of the counterexample chosen. If a long sequence was cho-
sen, then the observation table needs to be populated with the sequence and all its
prefixes. This increases the number of membership queries needed to populate
the observation table. A possible solution to this would be using the observation
sequences in increasing order of size. However, it would potentially increase the
number of equivalence queries. Finding a good heuristic to determine the quality
of counterexamples will be of interest in this case.

According to the experiences from these experiments, several lines of work
are identified that will help towards applying these algorithms practically. A

91

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

much more robust way to choose counterexamples is of prime importance. As it
currently relies on randomized algorithms. Using ideas from Supervisory Con-
trol Theory [35] to synchronize the two models, modified such that some events
are rendered uncontrollable, and then checking for controllability would result
in counterexamples. This is particularly useful when the system grows large.

Another line of work aims at finding metrics to determine the quality of mod-
els learned. Metrics that enable us to determine the level of abstraction in a model
as well as its usability, so as to be able to compare models learned using active
and passive methods, respectively.

The third line of work, and maybe the most challenging, is to learn richer
formalism in particular Extended Finite State Machine (EFSM) [36].

8 Bibliography

[1] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of man-
ufacturing systems,” Journal of Computational Design and Engineering,
vol. 1, 2014.

[2] J. Campos, C. Seatzu, and X. Xie, Formal methods in manufacturing. CRC
press, 2014.

[3] G. Frey and L. Litz, “Formal methods in PLC programming,” in Systems,
Man, and Cybernetics, 2000 IEEE International Conference on, vol. 4,
2000.

[4] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falkman, “Inte-
grated virtual preparation and commissioning: Supporting formal methods
during automation systems development,” IFAC-PapersOnLine, vol. 49,
no. 12, pp. 1939–1944, 2016.

[5] M. Dahl, A. Albo, J. Eriksson, J. Pettersson, and P. Falkman, “Virtual real-
ity commissioning in production systems preparation,” in 22nd IEEE Inter-
national Conference on Emerging Technologies And Factory Automation,
2017.

[6] C. Y. Cho, E. C. R. Shin, D. Song et al., “Inference and analysis of formal
models of botnet command and control protocols,” in Proceedings of the
17th ACM conference on Computer and communications security. ACM,
2010, pp. 426–439.

[7] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen,
“On the correspondence between conformance testing and regular infer-

92

BIBLIOGRAPHY

ence,” in International Conference on Fundamental Approaches to Soft-
ware Engineering. Springer, 2005, pp. 175–189.

[8] C. de la Higuera, “A bibliographical study of grammatical inference,” Pat-
tern Recognition, vol. 38, no. 9, 2005.

[9] ——, Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, 2010.

[10] A. Farooqui, K. Bengtsson, P. Falkman, and M. Fabian, “From factory floor
to operation models: An approach to generate, transform, and visualize
manufacturing systems,” 2018, submitted to Journal of Manufacturing Sci-
ence and Technology (CIRP-JMST).

[11] A. Farooqui, P. Falkman, and M. Fabian, “Towards automatic learning of
discrete-event models from simulations,” in 14th IEEE Conference on Au-
tomation Science and Engineering (CASE 2018), 2018, submitted.

[12] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction to
Automata Theory, Languages and Computability, 2nd ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[13] M. Bugalho and A. L. Oliveira, “Inference of regular languages using state
merging algorithms with search,” Pattern Recogn., vol. 38, no. 9, 2005.

[14] R. Parekh and V. Honavar, “Grammar inference, automata induction, and
language acquisition,” Handbook of natural language processing, pp. 727–
764, 2000.

[15] A. L. Oliveira and S. Edwards, “Limits of exact algorithms for inference
of minimum size finite state machines,” in Proceedings of the 7th Interna-
tional Workshop on Algorithmic Learning Theory, ser. ALT ’96, 1996.

[16] A. L. Oliveira and J. a. P. M. Silva, “Efficient algorithms for the inference
of minimum size DFAs,” Mach. Learn., vol. 44, no. 1-2, pp. 93–119, Jul.
2001.

[17] K. J. Lang, “Faster algorithms for finding minimal consistent DFAs,” Tech.
Rep., 1999.

[18] S. M. Lucas and T. J. Reynolds, “Learning DFA: evolution versus evidence
driven state merging,” in Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, vol. 1, Dec 2003, pp. 351–358.

[19] H. Juillé and J. B. Pollack, “A stochastic search approach to grammar in-
duction,” in Grammatical Inference, 1998.

93

PAPER 3. TOWARDS AUTOMATIC LEARNING OF DISCRETE-EVENT MODELS...

[20] M. Bugalho and A. L. Oliveira, “Inference of regular languages using state
merging algorithms with search,” Pattern Recogn., vol. 38, no. 9, Sep.
2005.

[21] A. Farooqui, K. Bengtsson, P. Falkman, and M. Fabian, “Real-time visual-
ization of robot operation sequences,” in 2018 IFAC Symposium on Infor-
mation Control Problems in Manufacturing (INCOM 2018), 2018.

[22] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture,
1st ed. Springer Publishing Company, Incorporated, 2009.

[23] Process Mining Workbench, last accessed Mon Apr 3 10:30:08 2017.
[Online]. Available: http://www.promtools.org/doku.php

[24] D. Angluin, “Learning regular sets from queries and counterexamples,” In-
formation and Computation, vol. 75, no. 2, pp. 87 – 106, 1987.

[25] S. Goldman and M. Kearns, “On the complexity of teaching,” J. Comput.
Syst. Sci., vol. 50, 1995.

[26] R. E. Schapire, The Design and Analysis of Efficient Learning Algorithms.
Cambridge, MA, USA: MIT Press, 1992.

[27] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learn-
ing Theory. Cambridge, MA, USA: MIT Press, 1994.

[28] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A redundancy-
free approach to active automata learning,” in Runtime Verification,
B. Bonakdarpour and S. A. Smolka, Eds. Springer International Pub-
lishing, 2014, pp. 307–322.

[29] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems. Springer, 2011, pp. 256–296.

[30] B. Jonsson, Learning of Automata Models Extended with Data. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 327–349.

[31] F. Aarts and F. Vaandrager, “Learning I/O automata,” in CONCUR 2010 -
Concurrency Theory, P. Gastin and F. Laroussinie, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 71–85.

[32] M. Isberner, F. Howar, and B. Steffen, “Learning register automata: from
languages to program structures,” Machine Learning, vol. 96, no. 1, pp.
65–98, Jul 2014.

94

http://www.promtools.org/doku.php

BIBLIOGRAPHY

[33] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying au-
tomata learning to embedded control software,” in Formal Methods and
Software Engineering. Springer International Publishing, 2015.

[34] U. Schöning, “Graph isomorphism is in the low hierarchy,” Journal of Com-
puter and System Sciences, vol. 37, no. 3, pp. 312 – 323, 1988.

[35] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer Science & Business Media, 2009.

[36] R. Malik, M. Fabian, and K. Åkesson, “Modelling large-scale discrete-
event systems using modules, aliases, and extended finite-state automata,”
IFAC Proceedings Volumes, vol. 44, no. 1, pp. 7000 – 7005, 2011, 18th
IFAC World Congress.

95

	Abstract
	Acknowledgments
	List of Publications
	Contents
	I Introductory Chapters
	Introduction
	Research Questions
	Objective and Contribution
	Method
	Outline

	The Broader Picture
	The New Workflow
	Virtual Commissioning
	Modeling Operations
	Formal Methods

	Inference of Formal Models
	Grammar Inference
	Passive Learning
	Active Learning

	Process Mining

	Summary of Contributions
	Concluding Remarks and Future Work
	Bibliography

	II Included Papers
	Paper 1 Error Handling Within Highly Automated Automotive Industry: Current Practice and Research Needs.
	Introduction
	Contribution
	Outline

	Background
	Error handling process

	Survey summary
	Error scenarios
	Measures to avoid error handing scenarios

	Future trends within manufacturing
	Research needs
	Conclusion
	Bibliography

	Paper 2 From Factory Floor to Process Models: A Data Gathering Approach to Generate, Transform, and Visualize Manufacturing Processes.
	Introduction
	Contribution
	Outline

	Software Architecture
	Pipeline components
	Message bus

	Robot event pipeline
	ABB endpoint
	Transformation endpoints
	Services

	Towards creating models
	Process Mining
	Identifying different product cycles
	Operation view
	Resource view

	Conclusions and Future work
	Future work

	Acknowledgements
	Bibliography

	Paper 3 Towards Automatic Learning of Discrete-Event Models using Queries and Observations.
	Introduction
	Outline

	Prerequisites
	Alphabets, Words and Languages
	Deterministic Finite State Automata
	Operations

	Background
	Passive learning
	Active Learning

	The L* Algorithm
	Towards Integrating Active and Passive learning
	L+ learning applied to a robotic arm
	Defining the system
	Results and Discussions

	Conclusion and Future work
	Bibliography

